Citation: | LIU Di, XU Wenhan, WANG Wendong, LI Dawei, GUAN Zhenyu, LIU Jianwei. Detecting and Mapping Framework for Physical Devices Based on Rowhammer Physical Unclonable Function[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3200-3209. doi: 10.11999/JEIT230388 |
[1] |
郭莉, 曹亚男, 苏马婧, 等. 网络空间资源测绘: 概念与技术[J]. 信息安全学报, 2018, 3(4): 1–14. doi: 10.19363/J.cnki.cn10-1380/tn.2018.07.01
GUO Li, CAO Ya’nan, SU Majing, et al. Cyberspace resources surveying and mapping: The concepts and technologies[J]. Journal of Cyber Security, 2018, 3(4): 1–14. doi: 10.19363/J.cnki.cn10-1380/tn.2018.07.01
|
[2] |
陈庆, 李晗, 杜跃进, 等. 网络空间测绘技术的实践与思考[J]. 信息通信技术与政策, 2021, 47(8): 30–38. doi: 10.12267/j.issn.2096-5931.2021.08.005
CHEN Qing, LI Han, DU Yuejin, et al. Practice and thinking of cyberspace surveying and mapping technology[J]. Information and Communications Technology and Policy, 2021, 47(8): 30–38. doi: 10.12267/j.issn.2096-5931.2021.08.005
|
[3] |
HOU Yuanwei, CHEN Xiaoxiao, HAO Yongle, et al. Survey of cyberspace resources scanning and analyzing[C]. The 14th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2020), Lodz, Poland, 2021: 279–291.
|
[4] |
NMAP. Nmap: The network mapper - free security scanner[EB/OL]. https://nmap.org/, 2023.
|
[5] |
DURUMERIC Z, WUSTROW E, and HALDERMAN J A. ZMap: Fast internet-wide scanning and its security applications[C]. The 22th USENIX Security Symposium, Washington, USA, 2013: 605–620.
|
[6] |
GRAHAM R D. MASSCAN: Mass IP port scanner[EB/OL]. https://github.com/robertdavidgraham/masscan, 2023.
|
[7] |
Shodan. Search engine for the internet of everything[EB/OL]. https://www.shodan.io, 2023.
|
[8] |
KIM Y, DALY R, KIM J, et al. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors[J]. ACM SIGARCH Computer Architecture News, 2014, 42(3): 361–372. doi: 10.1145/2678373.2665726
|
[9] |
COJOCAR L, KIM J, PATEL M, et al. Are we susceptible to rowhammer? An end-to-end methodology for cloud providers[C]. 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2020: 712–728.
|
[10] |
GRUSS D, MAURICE C, and MANGARD S. Rowhammer. js: A remote software-induced fault attack in javascript[C]. 13th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, San Sebastián, Spain, 2016: 300–321.
|
[11] |
DE RIDDER F, FRIGO P, VANNACCI E, et al. SMASH: Synchronized many-sided rowhammer attacks from JavaScript[C/OL]. 30th USENIX Security Symposium, 2021: 1001–1018.
|
[12] |
QIAO Rui and SEABORN M. A new approach for rowhammer attacks[C]. 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, USA, 2016: 161–166.
|
[13] |
KWONG A, GENKIN D, GRUSS D, et al. RAMBleed: Reading bits in memory without accessing them[C]. 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2020: 695–711.
|
[14] |
ZHANG Zhi, CHENG Yueqiang, WANG Minghua, et al. SoftTRR: Protect page tables against rowhammer attacks using software-only target row refresh[C]. 2022 USENIX Annual Technical Conference, Carlsbad, USA, 2022: 399–414.
|
[15] |
PESSL P, GRUSS D, MAURICE C, et al. DRAMA: Exploiting DRAM addressing for cross-CPU attacks[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 565–581.
|
[16] |
WANG Minghua, ZHANG Zhi, CHENG Yueqiang, et al. DRAMDig: A knowledge-assisted tool to uncover DRAM address mapping[C]. 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2020: 1–6.
|
[17] |
GRUSS D, LIPP M, SCHWARZ M, et al. Another flip in the wall of rowhammer defenses[C]. 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2018: 245–261.
|
[18] |
SAROIU S, WOLMAN A, and COJOCAR L. The price of secrecy: How hiding internal DRAM topologies hurts rowhammer defenses[C]. 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, USA, 2022: 2C. 3–1–2C. 3–6.
|
[19] |
FRIGO P, VANNACC E, HASSAN H, et al. TRRespass: Exploiting the many sides of target row refresh[C]. 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2020: 747–762.
|
[20] |
VAN DER VEEN V, FRATANTONIO Y, LINDORFER M, et al. Drammer: Deterministic rowhammer attacks on mobile platforms[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 1675–1689.
|
[21] |
SHARIFFUDDIN S, SIVAMANGAI N M, NAPOLEAN A, et al. Review on arbiter physical unclonable function and its implementation in FPGA for IoT security applications[C]. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 2022: 369–374.
|
[22] |
TEHRANIPOOR F, KARIMIAN N, YAN Wei, et al. DRAM-based intrinsic physically unclonable functions for system-level security and authentication[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(3): 1085–1097. doi: 10.1109/tvlsi.2016.2606658
|
[23] |
NAJAFI F, KAVEH M, MARTÍN D, et al. Deep PUF: A highly reliable DRAM PUF-based authentication for IoT networks using deep convolutional neural networks[J]. Sensors, 2021, 21(6): 2009. doi: 10.3390/s21062009
|
[24] |
SCHALLER A, XIONG Wenjie, ANAGNOSTOPOULOS N A, et al. Intrinsic rowhammer PUFs: Leveraging the rowhammer effect for improved security[C]. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Mclean, USA, 2017: 1–7.
|
[25] |
SCHALLER A, XIONG Wemjie, ANAGNOSTOPOULOS N A, et al. Decay-based DRAM PUFs in commodity devices[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 16(3): 462–475. doi: 10.1109/TDSC.2018.2822298
|
[26] |
SUTAR S, RAHA A, and RAGHUNATHAN V. D-PUF: An intrinsically reconfigurable DRAM PUF for device authentication in embedded systems[C]. The International Conference on Compliers, Architectures, and Sythesis of Embedded Systems, Pittsburgh, USA, 2016: 1–10.
|
[27] |
TALUKDER B M S B, RAY B, FORTE D, et al. PreLatPUF: Exploiting DRAM latency variations for generating robust device signatures[J]. IEEE Access, 2019, 7: 81106–81120. doi: 10.1109/ACCESS.2019.2923174
|