Advanced Search
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
MAI Jing, WANG Jiarui, DI Zhixiong, LIN Yibo. OpenPARF: An Open-source Placement and Routing Framework for Large-scale Heterogeneous FPGAs with Deep Learning Toolkit[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3118-3131. doi: 10.11999/JEIT230387
Citation: MAI Jing, WANG Jiarui, DI Zhixiong, LIN Yibo. OpenPARF: An Open-source Placement and Routing Framework for Large-scale Heterogeneous FPGAs with Deep Learning Toolkit[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3118-3131. doi: 10.11999/JEIT230387

OpenPARF: An Open-source Placement and Routing Framework for Large-scale Heterogeneous FPGAs with Deep Learning Toolkit

doi: 10.11999/JEIT230387
Funds:  Key Research and Development Program Projects of the Ministry of Science and Technology (2021ZD0114702)
  • Received Date: 2023-05-08
  • Rev Recd Date: 2023-08-21
  • Available Online: 2023-08-23
  • Publish Date: 2023-09-27
  • An Open-source Placement And Routing Framework (OpenPARF) for large-scale FPGA physical design is proposed in this paper. OpenPARF is implemented with of deep learning toolkit PyTorch and supports GPU massive parallel acceleration. For placement, the framework incorporates a novel asymmetric multi-electrostatic filed system to model the FPGA placement problem. For routing, OpenPARF integrates finer-grained internal routing of FPGA Configurable Logic Blocks (CLBs) in the routing model and supports routing on large-scale irregular routing resource graph. This study can significantly improve the FPGA routing algorithm's efficiency and effectiveness. Experimental results on ISPD 2016 and ISPD 2017 FPGA conest benchmarks and industrial-level FPGA benchmarks demonstrate that OpenPARF can achieve 0.4%~12.7% improvement in routed wirelength and more than two times speedup in placement.
  • loading
  • [1]
    MARKOV I L, HU Jin, and KIM M C. Progress and challenges in VLSI placement research[J]. Proceedings of the IEEE, 2015, 103(11): 1985–2003. doi: 10.1109/JPROC.2015.2478963
    [2]
    CHEN Deming, CONG J, and PAN Peichan. FPGA design automation: A survey[M]. BOX P O. Foundations and Trends in Electronic Design Automation. Hanover: Now Publishers Inc. , 2006.
    [3]
    MURRAY K E, WHITTY S, LIU Suya, et al. Timing-driven Titan: Enabling large benchmarks and exploring the gap between academic and commercial CAD[J]. ACM Transactions on Reconfigurable Technology and Systems, 2015, 8(2): 1–18. doi: 10.1145/2629579
    [4]
    MURRAY K E, PETELIN O, ZHONG Suya, et al. VTR 8: High-performance CAD and customizable FPGA architecture modelling[J]. ACM Transactions on Reconfigurable Technology and Systems, 2020, 13(2): 1–55. doi: 10.1145/3388617
    [5]
    UltraScale architecture configurable logic block user guide (UG574)[EB/OL].https://china.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug574-ultrascale-clb.pdf, 2017.
    [6]
    YANG S, GAYASEN A, MULPURI C, et al. Routability-driven FPGA placement contest[C]. The 2016 on International Symposium on Physical Design, Santa Rosa, USA, 2016: 139–143.
    [7]
    ZHANG Niansong, CHEN Xiang, and KAPRE N. RapidLayout: Fast hard block placement of FPGA-optimized systolic arrays using evolutionary algorithm[J]. ACM Transactions on Reconfigurable Technology and Systems, 2022, 15(4): 38. doi: 10.1145/3501803
    [8]
    ZHOU Yun, MAIDEE P, LAVIN C, et al. RWRoute: An open-source timing-driven router for commercial FPGAs[J]. ACM Transactions on Reconfigurable Technology and Systems, 2022, 15(1): 8. doi: 10.1145/3491236
    [9]
    YANG S, MULPURI C, REDDY S, et al. Clock-aware FPGA placement contest[C]. The 2017 ACM on International Symposium on Physical Design, Portland, USA, 2017: 159–164.
    [10]
    MARTIN T, BARNES C, AREIBI S, et al. An adaptive sequential decision making flow for FPGAs using machine learning[C]. 2022 International Conference on Microelectronics (ICM), Casablanca, Morocco, 2022: 34–37.
    [11]
    LIANG Tingyuan, CHEN Gengjie, ZHAO Jieru, et al. AMF-placer: High-performance analytical mixed-size placer for FPGA[C]. 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), Munich, Germany, 2021: 1–9.
    [12]
    CHEN T C, JIANG Zhewei, HSU T C, et al. NTUplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(7): 1228–1240. doi: 10.1109/TCAD.2008.923063
    [13]
    LU Jingwei, CHEN Pengwen, CHANG C C, et al. ePlace: Electrostatics based placement using Nesterov’s method[C]. The the 51st Annual Design Automation Conference, San Francisco, USA, 2014: 1–6.
    [14]
    CHENG C K, KAHNG A B, KANG I, et al. RePlAce: Advancing solution quality and routability validation in global placement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(9): 1717–1730. doi: 10.1109/TCAD.2018.2859220
    [15]
    LIU Lixin, FU Bangqi, WONG M D F, et al. Xplace: An extremely fast and extensible global placement framework[C]. The 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 1309–1314.
    [16]
    AGNESINA A, RAJVANSHI P, YANG Tian, et al. AutoDMP: Automated DREAMPlace-based macro placement[C]. The 2023 International Symposium on Physical Design, Virtual Event, USA, 2023: 149–157.
    [17]
    MAI Jing, MENG Yibai, DI Zhixiong, et al. Multi-electrostatic FPGA placement considering SLICEL-SLICEM heterogeneity and clock feasibility[C]. The 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 649–654.
    [18]
    RAJARATHNAM R S, ALAWIEH M B, JIANG Zixuan, et al. DREAMPlaceFPGA: An open-source analytical placer for large scale heterogeneous FPGAs using deep-learning toolkit[C]. 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, China, 2022: 300–306.
    [19]
    RAJARATHNAM R S, JIANG Zixuan, IYER M A, et al. DREAMPlaceFPGA-PL: An open-source GPU-accelerated packer-legalizer for heterogeneous FPGAs[C]. The 2023 International Symposium on Physical Design, Virtual Event, USA, 2023: 175–184.
    [20]
    MENG Yibai, LI Wuxi, LIN Yibo, et al. elfPlace: Electrostatics-based placement for large-scale heterogeneous FPGAs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(1): 155–168. doi: 10.1109/TCAD.2021.3053191
    [21]
    KIM M C, HU Jin, LEE D J, et al. A SimPLR method for routability-driven placement[C]. 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, USA, 2011: 67–73.
    [22]
    LI Wuxi, DHAR S, and PAN D Z. UTPlaceF: A routability-driven FPGA placer with physical and congestion aware packing[C]. The 2016 IEEE/ACM International Conference on Computer-Aided Design, Austin, USA, 2016: 1–7.
    [23]
    CHEN Gengjie, PUI C W, CHOW W K, et al. RippleFPGA: Routability-driven simultaneous packing and placement for modern FPGAs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(10): 2022–2035. doi: 10.1109/TCAD.2017.2778058
    [24]
    HSU M K, CHOU S, LIN T H, et al. Routability-driven analytical placement for mixed-size circuit designs[C]. 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, USA, 2011: 80–84.
    [25]
    CHEN Jianli, LIN Zhifeng, KUO Y C, et al. Clock-aware placement for large-scale heterogeneous FPGAs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 5042–5055. doi: 10.1109/TCAD.2020.2968892
    [26]
    PUI C W, CHEN Gengjie, MA Yuzhe, et al. Clock-aware ultrascale FPGA placement with machine learning routability prediction: (Invited paper)[C]. 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, USA, 2017: 929–936.
    [27]
    LI Wuxi, LIN Yibo, LI Meng, et al. UTPlaceF 2.0: A high-performance clock-aware FPGA placement engine[J]. ACM Transactions on Design Automation of Electronic Systems, 2018, 23(4): 42. doi: 10.1145/3174849
    [28]
    LI Wuxi, DEHKORDI M E, YANG S, et al. Simultaneous placement and clock tree construction for modern FPGAs[C]. The 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, USA, 2019: 132–141.
    [29]
    ZHU Ziran, MEI Yangjie, LI Zijun, et al. High-performance placement for large-scale heterogeneous FPGAs with clock constraints[C]. The 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 643–648.
    [30]
    FENG Wenyi. K-way partitioning based packing for FPGA logic blocks without input bandwidth constraint[C]. 2012 International Conference on Field-Programmable Technology, Seoul, Korea (South), 2012: 8–15.
    [31]
    BETZ V and ROSE J. VPR: A new packing, placement and routing tool for FPGA research[M]. LUK W, CHEUNG P Y K and GLESNER M. Field-Programmable Logic and Applications. Berlin, Heidelberg: Springer, 1997: 213–222.
    [32]
    LI Wuxi and PAN D Z. A new paradigm for FPGA placement without explicit packing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(11): 2113–2126. doi: 10.1109/TCAD.2018.2877017
    [33]
    DI Zhixiong, TAO Runzhe, CHEN Lin, et al. Imbalanced large graph learning framework for FPGA logic elements packing prediction[EB/OL]. Available: http: //arxiv. org/abs/2308. 03231, 2023.
    [34]
    MCMURCHIE L and EBELING C. PathFinder: A negotiation-based performance-driven router for FPGAs[C]. Third International ACM Symposium on Field-Programmable Gate Arrays, Napa Valley, USA, 1995: 111–117.
    [35]
    MURRAY K E, ZHONG Sheng, and BETZ V. AIR: A fast but lazy timing-driven FPGA router[C]. 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 2020: 338–344.
    [36]
    ZHOU Yun, VERCRUYCE D, and STROOBANDT D. Accelerating FPGA routing through algorithmic enhancements and connection-aware parallelization[J]. ACM Transactions on Reconfigurable Technology and Systems, 2020, 13(4): 1–26. doi: 10.1145/3406959
    [37]
    ZHA Yue and LI Jing. Revisiting pathfinder routing algorithm[C]. Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Virtual Event, USA, 2022: 24–34.
    [38]
    SHEN Minghua and LUO Guojie. Corolla: GPU-accelerated FPGA routing based on subgraph dynamic expansion[C]. The 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, USA, 2017: 105–114.
    [39]
    WANG Jiarui, MAI Jing, DI Zhixiong, et al. A Robust FPGA router with concurrent intra-CLB rerouting[C]. The 28th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 2023: 529–534.
    [40]
    RAY B N B, TRIPATHY A R, SAMAL P, et al. Half-perimeter wirelength model for VLSI analytical placement[C]. 2014 International Conference on Information Technology, Bhubaneswar, India, 2014: 287–292.
    [41]
    SPINDLER P and JOHANNES F M. Fast and accurate routing demand estimation for efficient routability-driven placement[C]. 2007 Design Automation & Test in Europe Conference & Exhibition, Nice, France, 2007: 1–6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (1161) PDF downloads(175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return