Advanced Search
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
CHEN Ziyang, ZHANG Meng, ZHANG Jiliang. A Fault-Tolerant Design of Spaceborne Onboard Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3234-3243. doi: 10.11999/JEIT230378
Citation: CHEN Ziyang, ZHANG Meng, ZHANG Jiliang. A Fault-Tolerant Design of Spaceborne Onboard Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3234-3243. doi: 10.11999/JEIT230378

A Fault-Tolerant Design of Spaceborne Onboard Neural Network

doi: 10.11999/JEIT230378
Funds:  The Key-Area Research and Development Program of Guangdong Province (2021B1101270006), The Natural Science Foundation of Jiangsu Province (BK20201145)
  • Received Date: 2023-05-05
  • Accepted Date: 2023-08-21
  • Rev Recd Date: 2023-08-20
  • Available Online: 2023-08-24
  • Publish Date: 2023-09-27
  • In order to meet the application requirements of high reliability on-orbit real-time ship target detection, a fault-tolerant reinforcement design for ship target detection based on neural network in Synthetic Aperture Radar (SAR) is proposed. The tiny network MobilenetV2 is used for detection model, which implements the pipeline process in the Field Programmable Gate Array (FPGA). The influence of Single Event Upset (SEU) model on the FPGA is analyzed, which combines the idea of parallelization acceleration and high reliability Triple Module Redundancy (TMR). In this way a partial triple redundancy architecture based on dynamic reconfiguration is designed. The fault-tolerant architecture employs multiple coarse-grained compute units to process multiple images at the same time and uses multi-unit voting to perform single-event flip self-inspection and recovery. The frame rate meets the real-time processing requirements after the real image playback test. By simulating single event upset test, this fault-tolerant design method can improve the detection accuracy of anti-single particle flip by more than 8% when the resource consumption is only increased by less than 20%, which is more suitable for on-orbit applications than the traditional fault-tolerant design method.
  • loading
  • [1]
    LI Yangyang, PENG Cheng, CHEN Yanqiao, et al. A deep learning method for change detection in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5751–5763. doi: 10.1109/TGRS.2019.2901945
    [2]
    CHEN Fulong, LASAPONARA R, and MASINI N. An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring[J]. Journal of Cultural Heritage, 2017, 23: 5–11. doi: 10.1016/j.culher.2015.05.003
    [3]
    RANEY R K. Hybrid dual-polarization synthetic aperture radar[J]. Remote Sensing, 2019, 11(13): 1521. doi: 10.3390/rs11131521
    [4]
    SUN Hongbo, SHIMADA M, and XU Feng. Recent advances in synthetic aperture radar remote sensing—systems, data processing, and applications[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2013–2016. doi: 10.1109/LGRS.2017.2747602
    [5]
    KECHAGIAS-STAMATIS and AOUF N. Automatic target recognition on synthetic aperture radar imagery: A survey[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(3): 56–81. doi: 10.1109/MAES.2021.3049857
    [6]
    ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR Ship Detection Dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690
    [7]
    YUE Zhenyu, GAO Fei, XIONG Qingxu, et al. A novel attention fully convolutional network method for synthetic aperture radar image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4585–4598. doi: 10.1109/JSTARS.2020.3016064
    [8]
    刘晨巍, 王沛尧, 朱岱寅. 基于FPGA的视频SAR高分辨率地面回放系统[J]. 现代雷达, 2021, 43(2): 40–46. doi: 10.16592/j.cnki.1004-7859.2021.02.006

    LIU Chenwei, WANG Peiyao, and ZHU Daiyin. High-resolution ground playback system for video SAR based on FPGA[J]. Modern Radar, 2021, 43(2): 40–46. doi: 10.16592/j.cnki.1004-7859.2021.02.006
    [9]
    黄太. 基于FPGA的视频SAR实时成像处理技术研究[D]. [硕士论文], 电子科技大学, 2022.

    HUANG Tai. Research on real-time video SAR imaging processing technology based on FPGA[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022.
    [10]
    李丹阳, 冯海兵, 聂孝亮, 等. 基于YOLO V5的噪声条件下SAR图像舰船目标检测[J]. 舰船电子对抗, 2022, 45(6): 68–72,99. doi: 10.16426/j.cnki.jcdzdk.2022.06.016

    LI Danyang, FENG Haibing, NIE Xiaoliang, et al. Ship target detection of SAR image based on YOLO V5 in noise condition[J]. Shipboard Electronic Countermeasure, 2022, 45(6): 68–72,99. doi: 10.16426/j.cnki.jcdzdk.2022.06.016
    [11]
    YANG Geng, LEI Jie, XIE Weiying, et al. Algorithm/hardware codesign for real-time on-satellite CNN-based ship detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–18. doi: 10.1109/TGRS.2022.3161499
    [12]
    WIEHLE S, MANDAPATI S, GUNZEL D, et al. Synthetic aperture radar image formation and processing on an MPSoC[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–14. doi: 10.1109/TGRS.2022.3167724
    [13]
    YU Jinxiang, YIN Tong, LI Shaoli, et al. Fast ship detection in optical remote sensing images based on sparse mobilenetv2 network[C]. The Thirteenth International Conference on Genetic and Evolutionary Computing, Qingdao, China, 2020: 262–269.
    [14]
    GUO Huadong, FU Wenxue, and LIU Guang. Development of earth observation satellites[M]. GUO Huadong, FU Wenxue, and LIU Guang. Scientific Satellite and Moon-Based Earth Observation for Global Change. Singapore: Springer, 2019: 31–49.
    [15]
    WANG Haibin, WANG Yangsheng, XIAO J H, et al. Impact of single-event upsets on convolutional neural networks in Xilinx Zynq FPGAs[J]. IEEE Transactions on Nuclear Science, 2021, 68(4): 394–401. doi: 10.1109/TNS.2021.3062014
    [16]
    XIE Xiaofei, ZHAO Guodong, WEI Wei, et al. MobileNetV2 accelerator for power and speed balanced embedded applications[C]. IEEE 2nd International Conference on Data Science and Computer Application. Dalian, China: IEEE, 2022: 134–139.
    [17]
    李宗凌, 汪路元, 蒋帅, 等. 超轻量网络的SAR图像舰船目标在轨提取[J]. 遥感学报, 2021, 25(3): 765–775. doi: 10.11834/jrs.20210160

    LI Zongling, WANG Luyuan, JIANG Shuai, et al. On orbit extraction method of ship target in SAR images based on ultra-lightweight network[J]. National Remote Sensing Bulletin, 2021, 25(3): 765–775. doi: 10.11834/jrs.20210160
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (370) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return