Citation: | LIU Yong, LI Taixin, ZHU Xi, YANG Huazhong, LI Xueqing. Memory and Compute-in-Memory Based on Ferroelectric Field Effect Transistors[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3083-3097. doi: 10.11999/JEIT230370 |
[1] |
SALAHUDDIN S, NI Kai, and DATTA S. The era of hyper-scaling in electronics[J]. Nature Electronics, 2018, 1(8): 442–450. doi: 10.1038/s41928-018-0117-x
|
[2] |
REUTHER A, MICHALEAS P, JONES M, et al. AI accelerator survey and trends[C]. 2021 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, USA, 2021: 1–9.
|
[3] |
LI Xueqing and LAI Longqiang. Nonvolatile memory and computing using emerging ferroelectric transistors[C]. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 2018: 750–755.
|
[4] |
CHANG C H, CHANG V S, PAN K H, et al. Critical process features enabling aggressive contacted gate pitch scaling for 3nm CMOS technology and beyond[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 27.1. 1–27.1. 4.
|
[5] |
REHMAN M M, REHMAN H M M U, GUL J Z, et al. Decade of 2D-materials-based RRAM devices: A review[J]. Science and Technology of Advanced Materials, 2020, 21(1): 147–186. doi: 10.1080/14686996.2020.1730236
|
[6] |
CHEN Zixuan, WU Huaqiang, GAO Bin, et al. Performance improvements by SL-current limiter and novel programming methods on 16MB RRAM chip[C]. 2017 IEEE International Memory Workshop (IMW), Monterey, USA, 2017: 1–4.
|
[7] |
IKEGAWA S, NAGEL K, MANCOFF F B, et al. High-speed (400MB/s) and low-BER STT-MRAM technology for industrial applications[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 10.4. 1–10.4. 4.
|
[8] |
LEE T Y, LEE J M, KIM M K, et al. World-most energy-efficient MRAM technology for non-volatile RAM applications[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 10.7. 1–10.7. 4.
|
[9] |
MIN D, PARK J, WEBER O, et al. 18nm FDSOI technology platform embedding PCM & innovative continuous-active construct enhancing performance for leading-edge MCU applications[C]. 2021 IEEE International Electron Devices Meeting, San Francisco, USA, 2021: 13.1. 1–13.1. 4.
|
[10] |
XIAO Yi, XU Yixin, JIANG Zhouhang, et al. On the write schemes and efficiency of FeFET 1T NOR array for embedded nonvolatile memory and beyond[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 13.6. 1–13.6. 4.
|
[11] |
DUTTA S, YE H, CHAKRABORTY W, et al. Monolithic 3D integration of high endurance multi-bit ferroelectric FET for accelerating compute-in-memory[C]. 2020 IEEE International Electron Devices Meeting, San Francisco, USA, 2020: 36.4. 1–36.4. 4.
|
[12] |
MULAOSMANOVIC H, BREYER E T, DÜNKEL S, et al. Ferroelectric field-effect transistors based on HfO2: A review[J]. Nanotechnology, 2021, 32(50): 502002. doi: 10.1088/1361-6528/ac189f
|
[13] |
VALASEK J. Piezo-electric and allied phenomena in Rochelle salt[J]. Physical Review, 1921, 17(4): 475–481. doi: 10.1103/PhysRev.17.475
|
[14] |
MORTON J A. Electrical switching and storage[P]. US Patent, US-2791761-A, 1957-05-07.
|
[15] |
MOLL J L and TARUI Y. A new solid state memory resistor[J]. IEEE Transactions on Electron Devices, 1963, 10(5): 338. doi: 10.1109/T-ED.1963.15245
|
[16] |
HIGUMA Y, MATSUI Y, OKUYAMA M, et al. "MFS FET" -a new type of nonvolatile memory switch using PLZT film[J]. Japanese Journal of Applied Physics, 1978, 17(S1): 209–214. doi: 10.7567/JJAPS.17S1.209
|
[17] |
BATRA I P, WURFEL P, and SILVERMAN B D. Phase transition, stability, and depolarization field in ferroelectric thin films[J]. Physical Review B, 1973, 8(7): 3257–3265. doi: 10.1103/PhysRevB.8.3257
|
[18] |
WU S Y. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor[J]. IEEE Transactions on Electron Devices, 1974, 21(8): 499–504. doi: 10.1109/T-ED.1974.17955
|
[19] |
KHAN A I, KESHAVARZI A, and DATTA S. The future of ferroelectric field-effect transistor technology[J]. Nature Electronics, 2020, 3(10): 588–597. doi: 10.1038/s41928-020-00492-7
|
[20] |
BÖSCKE T S, MÜLLER J, BRÄUHAUS D, et al. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors[C]. 2011 International Electron Devices Meeting, Washington, USA, 2011: 24.5. 1–24.5. 4.
|
[21] |
DÜNKEL S, TRENTZSCH M, RICHTER R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 19.7. 1–19.7. 4.
|
[22] |
FU Tianyue, ZENG Min, LIU Shiyuan, et al. Record-high 2Pr=60 μC/cm2 by Sub-5ns switching pulse in ferroelectric lanthanum-doped HfO2 with large single grain of orthorhombic phase >38 nm[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 6.5. 1–6.5. 4.
|
[23] |
JERRY M, AZIZ A, NI K, et al. A threshold switch augmented hybrid-FeFET(H-FeFET) with enhanced read distinguishability and reduced programming voltage for non-volatile memory applications[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 129–130.
|
[24] |
ZHOU Yuejia, LIANG Zhongxin, LUO Wenpu, et al. Ferroelectric and interlayer co-optimization with in-depth analysis for high endurance FeFET[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 6.2. 1–6.2.4.
|
[25] |
SHARMA A A, DOYLE B, YOO H J, et al. High speed memory operation in channel-last, back-gated ferroelectric transistors[C]. 2020 IEEE International Electron Devices Meeting, San Francisco, USA, 2020: 18.5. 1–18.5. 4.
|
[26] |
ZHENG Zijie, SUN Chen, JIAO Leming, et al. Boosting the memory window of the BEOL-compatible MFMIS ferroelectric/ anti-ferroelectric FETs by charge injection[C]. 2022 IEEE Symposium on VLSI Technology and Circuits, Honolulu, USA, 2022: 389–390.
|
[27] |
MULAOSMANOVIC H, DÜNKEL S, TRENTZSCH M, et al. Investigation of accumulative switching in ferroelectric FETs: Enabling universal modeling of the switching behavior[J]. IEEE Transactions on Electron Devices, 2020, 67(12): 5804–5809. doi: 10.1109/TED.2020.3031249
|
[28] |
BAE J H, KWON D, JEON N, et al. Highly scaled, high endurance, Ω-gate, nanowire ferroelectric FET memory transistors[J]. IEEE Electron Device Letters, 2020, 41(11): 1637–1640. doi: 10.1109/LED.2020.3028339
|
[29] |
YAN S C, LAN G M, SUN C J, et al. High speed and large memory window ferroelectric HfZrO2 FinFET for high-density nonvolatile memory[J]. IEEE Electron Device Letters, 2021, 42(9): 1307–1310. doi: 10.1109/LED.2021.3097777
|
[30] |
LIAO C Y, HSIANG K Y, LOU Z F, et al. Endurance > 1011 cycling of 3D GAA nanosheet ferroelectric FET with stacked HfZrO2 to homogenize corner field toward mitigate dead zone for high-density eNVM[C]. 2022 IEEE Symposium on VLSI Technology and Circuits, Honolulu, USA, 2022: 1–2.
|
[31] |
AZIZ A, GHOSH S, DATTA S, et al. Physics-based circuit-compatible SPICE model for ferroelectric transistors[J]. IEEE Electron Device Letters, 2016, 37(6): 805–808. doi: 10.1109/LED.2016.2558149
|
[32] |
NI Kai, JERRY M, SMITH J A, et al. A circuit compatible accurate compact model for ferroelectric-FETs[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 131–132.
|
[33] |
DENG Shan, YIN Guodong, CHAKRABORTY W, et al. A comprehensive model for ferroelectric FET capturing the key behaviors: Scalability, variation, stochasticity, and accumulation[C]. 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020: 1–2.
|
[34] |
SONG T, RIM W, KIM H, et al. 24.3 a 3nm gate-all-around SRAM featuring an adaptive dual-BL and an adaptive cell-power assist circuit[C]. 2021 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2021: 338–340.
|
[35] |
SALIGRAM R, DATTA S, and RAYCHOWDHURY A. CryoMem: A 4K-300K 1.3GHz eDRAM macro with hybrid 2T-gain-cell in a 28nm logic process for cryogenic applications[C]. 2021 IEEE Custom Integrated Circuits Conference, Austin, USA, 2021: 1–2.
|
[36] |
JOURBA S, BOLLON N, DECOBERT C, et al. Performance and reliability of 4 Mb eFLASH memory array featuring 28 nm split-gate cell with HKMG select transistor[C]. 2020 IEEE International Memory Workshop, Dresden, Germany, 2020: 1–4.
|
[37] |
SONG Z T, CAI D L, LI X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application[C]. 2018 IEEE International Electron Devices Meeting, San Francisco, USA, 2018: 27.5. 1–27.5. 4.
|
[38] |
YANG Jianguo, LUO Qing, XUE Xiaoyong, et al. A 9Mb HZO-based embedded FeRAM with 1012-cycle endurance and 5/7ns read/write using ECC-assisted data refresh and offset-canceled sense amplifier[C]. 2023 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2023: 1–3.
|
[39] |
ULLMANN M, GOEBEL H, HOENIGSCHMID H, et al. Disturb free programming scheme for single transistor ferroelectric memory arrays[J]. Integrated Ferroelectrics, 2001, 34(1/4): 155–164. doi: 10.1080/10584580108012885
|
[40] |
SHARMA A and ROY K. 1T non-volatile memory design using sub-10nm ferroelectric FETs[J]. IEEE Electron Device Letters, 2018, 39(3): 359–362. doi: 10.1109/LED.2018.2797887
|
[41] |
DAHAN M M, BREYER E T, SLESAZECK S, et al. C-AND: Mixed writing scheme for disturb reduction in 1T ferroelectric FET memory[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(4): 1595–1605. doi: 10.1109/TCSI.2021.3139736
|
[42] |
JIANG Zhouhang, ZHAO Zijian, DENG Shan, et al. On the feasibility of 1T ferroelectric FET memory array[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6722–6730. doi: 10.1109/TED.2022.3216819
|
[43] |
GEORGE S, MA Kaisheng, AZIZ A, et al. Nonvolatile memory design based on ferroelectric FETs[C]. 2016 53rd ACM/EDAC/IEEE Design Automation Conference, Austin, USA, 2016: 1–6.
|
[44] |
LI Xueqing, WU Juejian, NI Kai, et al. Design of 2T/cell and 3T/cell nonvolatile memories with emerging ferroelectric FETs[J]. IEEE Design & Test, 2019, 36(3): 39–45. doi: 10.1109/MDAT.2019.2902094
|
[45] |
NI Kai, LI Xueqing, SMITH J A, et al. Write disturb in ferroelectric FETs and its implication for 1T-FeFET AND memory arrays[J]. IEEE Electron Device Letters, 2018, 39(11): 1656–1659. doi: 10.1109/LED.2018.2872347
|
[46] |
GEORGE S, LI Xueqing, LIAO M J, et al. Symmetric 2-D-memory access to multidimensional data[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(6): 1040–1050. doi: 10.1109/TVLSI.2018.2801302
|
[47] |
WU Juejian, ZHONG Hongtao, NI Kai, et al. A 3T/cell practical embedded nonvolatile memory supporting symmetric read and write access based on ferroelectric FETs[C]. The 56th Annual Design Automation Conference 2019, Las Vegas, USA, 2019: 82.
|
[48] |
MULAOSMANOVIC H, SLESAZECK S, OCKER J, et al. Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells[C]. 2015 IEEE International Electron Devices Meeting, Washington, USA, 2015: 26.8. 1–26.8. 3.
|
[49] |
WU Juejian, XU Yixin, XUE Bowen, et al. Adaptive circuit approaches to low-power multi-level/cell FeFET memory[C]. 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 2020: 407–413.
|
[50] |
GUO An, SI Xin, CHEN Xi, et al. A 28nm 64-kb 31.6-TFLOPS/W digital-domain floating-point-computing-unit and double-bit 6T-SRAM computing-in-memory macro for floating-point CNNs[C]. 2023 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2023: 128–130.
|
[51] |
XIE Shanshan, NI Can, SAYAL A, et al. 16.2 eDRAM-CIM: Compute-in-memory design with reconfigurable embedded-dynamic-memory array realizing adaptive data converters and charge-domain computing[C]. 2021 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2021: 248–250.
|
[52] |
YE Wang, WANG Linfang, ZHOU Zhidao, et al. A 28-nm RRAM computing-in-memory macro using weighted hybrid 2T1R cell array and reference subtracting sense amplifier for AI edge inference[J]. IEEE Journal of Solid-State Circuits, To be published.
|
[53] |
CAI Hao, BIAN Zhongjian, HOU Yaoru, et al. 33.4 A 28nm 2Mb STT-MRAM computing-in-memory macro with a refined bit-cell and 22.4 - 41.5TOPS/W for AI inference[C]. 2023 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2023: 500–502.
|
[54] |
CAI Hao, GUO Yanan, LIU Bo, et al. Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and universal STT-MRAM cell[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(4): 1519–1531. doi: 10.1109/TCSI.2022.3140769
|
[55] |
CAI Hao, BIAN Zhongjian, FAN Zhonghua, et al. Commodity bit-cell sponsored MRAM interaction design for binary neural network[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1721–1726. doi: 10.1109/TED.2021.3134588
|
[56] |
REIS D, NIEMIER M, and HU X S. Computing in memory with FeFETs[C]. The International Symposium on Low Power Electronics and Design (ISLPED '18), Seattle, USA, 2018: 24.
|
[57] |
YIN Xunzhao, AZIZ A, NAHAS J, et al. Exploiting ferroelectric FETs for low-power non-volatile logic-in-memory circuits[C]. 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, USA, 2016: 1–8.
|
[58] |
LI Xueqing, MA Kaisheng, GEORGE S, et al. Design of nonvolatile SRAM with ferroelectric FETs for energy-efficient backup and restore[J]. IEEE Transactions on Electron Devices, 2017, 64(7): 3037–3040. doi: 10.1109/TED.2017.2707664
|
[59] |
WANG Jianfeng, XIU Nuo, WU Juejian, et al. An 8T/Cell FeFET-based nonvolatile SRAM with improved density and sub-fJ backup and restore energy[C]. 2022 IEEE International Symposium on Circuits and Systems, Austin, USA, 2022: 3408–3412.
|
[60] |
LI Xueqing, SAMPSON J, KHAN A, et al. Enabling energy-efficient nonvolatile computing with negative capacitance FET[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3452–3458. doi: 10.1109/TED.2017.2716338
|
[61] |
LI Xueqing, GEORGE S, MA Kaisheng, et al. Advancing nonvolatile computing with nonvolatile NCFET latches and flip-flops[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017, 64(11): 2907–2919. doi: 10.1109/TCSI.2017.2702741
|
[62] |
LI Xueqing, GEORGE S, LIANG Yuhua, et al. Lowering area overheads for FeFET-based energy-efficient nonvolatile flip-flops[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2670–2674. doi: 10.1109/TED.2018.2829348
|
[63] |
TANG Wenjun, LEE M, WU Juejian, et al. FeFET-based logic-in-memory supporting SA-free write-back and fully dynamic access with reduced bitline charging activity and recycled bitline charge[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(6): 2398–2411. doi: 10.1109/TCSI.2023.3251961
|
[64] |
JERRY M, CHEN P Y, ZHANG Jianchi, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 6.2. 1–6.2. 4.
|
[65] |
SOLIMAN T, MÜLLER F, KIRCHNER T, et al. Ultra-low power flexible precision FeFET based analog in-memory computing[C]. 2020 IEEE International Electron Devices Meeting, San Francisco, USA, 2020: 29.2. 1–29.2. 4.
|
[66] |
SAITO D, KOBAYASHI T, KOGA H, et al. Analog in-memory computing in FeFET-based 1T1R array for edge AI applications[C]. 2021 Symposium on VLSI Technology, Kyoto, Japan, 2021: 1–2.
|
[67] |
CHEN Xiaoming, YIN Xunzhao, NIEMIER M, et al. Design and optimization of FeFET-based crossbars for binary convolution neural networks[C]. 2018 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2018: 1205–1210.
|
[68] |
YIN Guodong, CAI Yi, WU Juejian, et al. Enabling lower-power charge-domain nonvolatile in-memory computing with ferroelectric FETs[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(7): 2262–2266. doi: 10.1109/TCSII.2021.3049844
|
[69] |
DE S, MÜLLER F, LALENI N, et al. Demonstration of multiply-accumulate operation with 28 nm FeFET crossbar array[J]. IEEE Electron Device Letters, 2022, 43(12): 2081–2084. doi: 10.1109/LED.2022.3216558
|
[70] |
SOLIMAN T, CHATTERJEE S, LALENI N, et al. First demonstration of in-memory computing crossbar using multi-level cell FeFET[EB/OL]. https://doi.org/10.21203/rs.3.rs-2948718/v1.
|
[71] |
YIN Xunzhao, NIEMIER M, and HU X S. Design and benchmarking of ferroelectric FET based TCAM[C]. Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 2017: 1444–1449.
|
[72] |
YIN Xunzhao, NI Kai, REIS D, et al. An ultra-dense 2FeFET TCAM design based on a multi-domain FeFET model[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(9): 1577–1581. doi: 10.1109/TCSII.2018.2889225
|
[73] |
NI Kai, YIN Xunzhao, LAGUNA A F, et al. Ferroelectric ternary content-addressable memory for one-shot learning[J]. Nature Electronics, 2019, 2(11): 521–529. doi: 10.1038/s41928-019-0321-3
|
[74] |
MA Xiaoyang, ZHONG Hongtao, XIU Nuo, et al. CapCAM: A multilevel capacitive content addressable memory for high-accuracy and high-scalability search and compute applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(11): 1770–1782. doi: 10.1109/TVLSI.2022.3198492
|
[75] |
GEORGE S, JAO N, RAMANATHAN A K, et al. Integrated CAM-RAM functionality using ferroelectric FETs[C]. 2020 21st International Symposium on Quality Electronic Design, Santa Clara, USA, 2020: 81–86.
|
[76] |
KAZEMI A, MÜLLER F, SHARIFI M M, et al. Achieving software-equivalent accuracy for hyperdimensional computing with ferroelectric-based in-memory computing[J]. Scientific Reports, 2022, 12(1): 19201. doi: 10.1038/s41598-022-23116-w
|
[77] |
LIU Liu, KUMAR S, THOMANN S, et al. Compact and high-performance TCAM based on scaled double-gate FeFETs[EB/OL].https://arxiv.org/pdf/2304.03868.pdf.2023.4, 2023.
|
[78] |
LIU Liu, LAGUNA A F, RAJAEI R, et al. A reconfigurable FeFET content addressable memory for multi-state hamming distance[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(6): 2356–2369. doi: 10.1109/TCSI.2023.3259940
|