Citation: | LI Kang, SHI Ruizhi, CHEN Jiawei, SHI Jiangyi, PAN Weitao, WANG Jie. An Efficient and High-precision Power Consumption Prediction Model for the Register Transfer Level Design Phase[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3166-3174. doi: 10.11999/JEIT230359 |
[1] |
RAUT K J, CHITRE A V, DESHMUKH M S, et al. Low power VLSI design techniques: A review[J]. Journal of University of Shanghai for Science and Technology, 2021, 23(11): 172–183. doi: 10.51201/JUSST/21/11881
|
[2] |
REN Haoxing and HU Jiang. Machine Learning Applications in Electronic Design Automation[M]. Cham: Springer, 2023.
|
[3] |
SROUR M. Data-dependent cycle-accurate power modeling of RTL-level IPs using machine learning[D]. [Master dissertation], The University of Texas at Austin, 2018.
|
[4] |
DHOTRE H, EGGERSGLÜß S, CHAKRABARTY K, et al. Machine learning-based prediction of test power[C]. 2019 IEEE European Test Symposium (ETS), Baden-Baden, Germany, 2019: 1–6.
|
[5] |
NASSER Y, SAU C, PRÉVOTET J C, et al. NeuPow: A CAD methodology for high-level power estimation based on machine learning[J]. ACM Transactions on Design Automation of Electronic Systems, 2020, 25(5): 41. doi: 10.1145/3388141
|
[6] |
ZHOU Yuan, REN Haoxing, ZHANG Yanqing, et al. PRIMAL: Power inference using machine learning[C]. The 56th Annual Design Automation Conference 2019, Las Vegas, USA, 2019: 39.
|
[7] |
KIM D, ZHAO J, BACHRACH J, et al. Simmani: Runtime power modeling for arbitrary RTL with automatic signal selection[C]. The 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, USA, 2019: 1050–1062.
|
[8] |
XIE Zhiyao, XU Xiaoqing, WALKER M, et al. APOLLO: An automated power modeling framework for runtime power introspection in high-volume commercial microprocessors[C/OL]. MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021: 1–14.
|
[9] |
PUNDIR N, PARK J, FARAHMANDI F, et al. Power side-channel leakage assessment framework at register-transfer level[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(9): 1207–1218. doi: 10.1109/TVLSI.2022.3175067
|
[10] |
HUANG Guyue, HU Jingbo, HE Yifan, et al. Machine learning for electronic design automation: A survey[J]. ACM Transactions on Design Automation of Electronic Systems, 2021, 26(5): 40. doi: 10.1145/3451179
|
[11] |
FAN Jianqing and LI Runze. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American statistical Association, 2001, 96(456): 1348–1360. doi: 10.1198/016214501753382273
|
[12] |
TIAN Yingjie and ZHANG Yuqi. A comprehensive survey on regularization strategies in machine learning[J]. Information Fusion, 2022, 80: 146–166. doi: 10.1016/j.inffus.2021.11.005
|
[13] |
SCHÜRMANS S, ONNEBRINK G, LEUPERS R, et al. ESL power estimation using virtual platforms with black box processor models[C]. The 2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Samos, Greece, 2015: 354–359.
|
[14] |
ZHANG Xianda. Modern Signal Processing[M]. Tsinghua University Press, 2022: 497–564.
|
[15] |
ZHOU Guochang, GUO Baolong, GAO Xiang, et al. A FPGA power estimation method based on an improved BP neural network[C]. 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, Australia, 2015: 251–254,
|
[16] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[17] |
CHHABRIA V A, AHUJA V, PRABHU A, et al. Thermal and IR drop analysis using convolutional encoder-decoder networks[C]. The 26th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 2021: 690–696.
|
[18] |
FARAWAY J J. Linear Models with R[M]. 2nd ed. New York: CRC Press, 2014.
|
[19] |
JEON H and OH S. Hybrid-recursive feature elimination for efficient feature selection[J]. Applied Sciences, 2020, 10(9): 3211. doi: 10.3390/app10093211
|
[20] |
XUAN Yi, SI Weiguo, ZHU Zhu, et al. Multi-model fusion short-term load forecasting based on random forest feature selection and hybrid neural network[J]. IEEE Access, 2021, 9: 69002–69009. doi: 10.1109/ACCESS.2021.3051337
|