Advanced Search
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LIU Xiao, LIU Dijun, ZHANG Youguang, LUO Lichuan, KANG Wang. Design of an Process In-Memory Full Adder Based on Voltage-Controlled Spin Orbit Torque Magnetic Random Access Memory[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3228-3233. doi: 10.11999/JEIT230306
Citation: LIU Xiao, LIU Dijun, ZHANG Youguang, LUO Lichuan, KANG Wang. Design of an Process In-Memory Full Adder Based on Voltage-Controlled Spin Orbit Torque Magnetic Random Access Memory[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3228-3233. doi: 10.11999/JEIT230306

Design of an Process In-Memory Full Adder Based on Voltage-Controlled Spin Orbit Torque Magnetic Random Access Memory

doi: 10.11999/JEIT230306
  • Received Date: 2023-04-19
  • Accepted Date: 2023-08-17
  • Rev Recd Date: 2023-08-16
  • Available Online: 2023-08-22
  • Publish Date: 2023-09-27
  • With the feature size of complementary metal oxide semiconductor technology decreasing, the problem of static power consumption becomes more and more serious. Spin Magnetic Random Access Memory (MRAM) has been widely studied because of its nonvolatile, high-speed read-write ability, high integration density and CMOS compatibility. In this paper, a reconfigurable memory logic array is designed using a novel Voltage-Controlled Spin-Orbit Torque(VC-SOT) random access memory. It can implement all of Boolean Logic functions and highly parallel computing. On this basis, an in-memory computing Full Adder (FA) is designed and simulated in 40 nm process. The results show that the proposed full adder has higher parallelism, faster computation speed (~1.11 ns/bit) and lower computation power consumption (~5.07 fJ/bit).
  • loading
  • [1]
    KIM N S, AUSTIN T, BAAUW D, et al. Leakage current: Moore's law meets static power[J]. Computer, 2003, 36(12): 68–75. doi: 10.1109/MC.2003.1250885
    [2]
    MUSELLO A, GARZÓN E, LANUZZA M, et al. XNOR-bitcount operation exploiting computing-in-memory with STT-MRAMs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(3): 1259–1263.
    [3]
    WONG H S P and SALAHUDDIN S. Memory leads the way to better computing[J]. Nature Nanotechnology, 2015, 10(3): 191–194. doi: 10.1038/nnano.2015.29
    [4]
    KANG Wang, ZHANG Yue, WANG Zhaohao, et al. Spintronics: Emerging ultra-low-power circuits and systems beyond MOS technology[J]. ACM Journal on Emerging Technologies in Computing Systems, 2015, 12(2): 16. doi: 10.1145/2663351
    [5]
    SHARMA V, KIM H, and KIM T T H. A 64 Kb reconfigurable full-precision digital ReRAM-based compute-in-memory for artificial intelligence applications[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(8): 3284–3296. doi: 10.1109/TCSI.2022.3168053
    [6]
    YOON J H, CHANG Muya, KHWA W S, et al. A 40-nm, 64-Kb, 56.67 TOPS/W voltage-sensing computing-in-memory/digital RRAM macro supporting iterative write with verification and online read-disturb detection[J]. IEEE Journal of Solid-State Circuits, 2022, 57(1): 68–79. doi: 10.1109/JSSC.2021.3101209
    [7]
    GUO Zongxia, YIN Jialiang, BAI Yue, et al. Spintronics for energy- efficient computing: An overview and outlook[J]. Proceedings of the IEEE, 2021, 109(8): 1398–1417. doi: 10.1109/JPROC.2021.3084997
    [8]
    SAFRANSKI C, HU Guohan, SUN J Z, et al. Reliable sub-nanosecond switching in magnetic tunnel junctions for MRAM applications[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 7180–7183. doi: 10.1109/TED.2022.3214168
    [9]
    DONG Xiangyu, WU Xiaoxia, SUN Guangyu, et al. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement[C]. The 45th Annual Design Automation Conference, Anaheim, USA, 2008.
    [10]
    ZAND R, ROOHI A, SALEHI S, et al. Scalable adaptive spintronic reconfigurable logic using area-matched MTJ design[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2016, 63(7): 678–682. doi: 10.1109/TCSII.2016.2532099
    [11]
    FONG Xuanyao, KIM Y, YOGENDRA K, et al. Spin-transfer torque devices for logic and memory: Prospects and perspectives[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(1): 1–22. doi: 10.1109/TCAD.2015.2481793
    [12]
    ROOHI A, ZAND R, and DEMARA R F. A tunable majority gate-based full adder using current-induced domain wall nanomagnets[J]. IEEE Transactions on Magnetics, 2016, 52(8): 1–7. doi: 10.1109/TMAG.2016.2540600
    [13]
    RAJAEI R. Highly reliable and low-power magnetic full-adder designs for nanoscale technologies[J]. Microelectronics Reliability, 2017, 73: 129–135. doi: 10.1016/j.microrel.2017.04.033
    [14]
    DENG Erya, YUE Zue, KLEIN J O, et al. Low power magnetic full-adder based on spin transfer torque MRAM[J]. IEEE Transactions on Magnetics, 2013, 49(9): 4982–4987. doi: 10.1109/TMAG.2013.2245911
    [15]
    ZHONG Xingwei, CAI Kui, and SONG Guanghui. Union bound analysis for Spin-Torque Transfer Magnetic Random Access Memory (STT-MRAM) with channel quantization[J]. IEEE Transactions on Magnetics, 2022, 58(2): 3400105. doi: 10.1109/TMAG.2021.3084210
    [16]
    SHAO Qiming, LI Peng, LIU Luqiao, et al. Roadmap of spin-orbit torques[J]. IEEE Transactions on Magnetics, 2021, 57(7): 800439. doi: 10.1109/TMAG.2021.3078583
    [17]
    PENG Shouzhong, LU Jiaqi, LI Weixiang, et al. Field-free switching of perpendicular magnetization through voltage-gated spin-orbit torque[C]. 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019.
    [18]
    ZHANG He, KANG Wang, WU Bi, et al. Spintronic processing unit within voltage-gated spin hall effect MRAMs[J]. IEEE Transactions on Nanotechnology, 2019, 18: 473–483. doi: 10.1109/TNANO.2019.2914009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (642) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return