Advanced Search
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
YAO Liang, HUANG Zhengfeng, LIANG Huaguo, LU Yingchun. Research on Low-overhead Dual-output XOR Gate True Random Number Generator Utilizing Fine-grained Sampling[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3295-3301. doi: 10.11999/JEIT230304
Citation: YAO Liang, HUANG Zhengfeng, LIANG Huaguo, LU Yingchun. Research on Low-overhead Dual-output XOR Gate True Random Number Generator Utilizing Fine-grained Sampling[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3295-3301. doi: 10.11999/JEIT230304

Research on Low-overhead Dual-output XOR Gate True Random Number Generator Utilizing Fine-grained Sampling

doi: 10.11999/JEIT230304
Funds:  The General Program of National Natural Science Foundation of China (62174048, 62274052), The Research and Development Project of Major Scientific Research Instruments of the National Natural Science Foundation of China (62027815), The National Natural Science Foundation of China Key Cooperation Project (61834006), The Special Fund for Basic Research Business Funds of Central Universities (JZ2022HGQA0233)
  • Received Date: 2023-04-19
  • Rev Recd Date: 2023-08-16
  • Available Online: 2023-08-21
  • Publish Date: 2023-09-27
  • True Random Number Generator (TRNG) is a key building block in security applications that provides the required high-quality random bits for data encryption, cryptographic random numbers, and initialization vectors. The Ring Oscillator (RO) TRNG is a broad application design to support a variety of safety-related applications. However, implementing RO TRNG in FPGAs incurs typically high hardware overhead. Therefore, a low-overhead RO TRNG based on a dual-output XOR gate unit is proposed in this paper, and the entropy source circuit of TRNG can be constructed using only a single configurable logic block. Through the multi-phase fine-grained sampling mechanism, circuit jitter is effectively collected and captured. The proposed RO TRNG is implemented and verified on AMD Xilinx Viretx-6 and Artix-7 series FPGAs, and the experimental results show that the proposed RO TRNG hardware overhead is low and the quality of the random sequence is satisfactory.
  • loading
  • [1]
    HASSIJA V, CHAMOLA V, GUPTA V, et al. A survey on supply chain security: Application areas, security threats, and solution architectures[J]. IEEE Internet of Things Journal, 2021, 8(8): 6222–6246. doi: 10.1109/JIOT.2020.3025775
    [2]
    魏子魁, 胡毅, 金鑫, 等. 一种低功耗高噪声源真随机数设计[J]. 电子与信息学报, 2020, 42(10): 2566–2572. doi: 10.11999/JEIT190719

    WEI Zikui, HU Yi, JIN Xin, et al. A true random number design of low power and high noise source[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2566–2572. doi: 10.11999/JEIT190719
    [3]
    LU Yingchun, LIANG Huaguo, YAO Liang, et al. Jitter-quantizing-based TRNG robust against PVT variations[J]. IEEE Access, 2020, 8: 108482–108490. doi: 10.1109/ACCESS.2020.3000231
    [4]
    RUKHIN A, SOTO J, NECHVATAL J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications[R]. NIST Special Publication 800-22, 2010.
    [5]
    BARKER E, KELSEY J, and SECRETARY J B. NIST DRAFT special publication 800–90B recommendation for the entropy sources[OL]. https://www.nist.gov/news-events/news/2018/01/nist-announces-release-special-publication-800-906-recommendation-entropy.
    [6]
    KILLMANN W and SCHINDLE W. A proposal for: Functionality classes for random number generators[EB/OL]. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html, 2011.
    [7]
    GRUJIC M and VERBAUWHEDE I. TROT: A three-edge ring oscillator based true random number generator with time-to-digital conversion[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(6): 2435–2448. doi: 10.1109/TCSI.2022.3158022
    [8]
    NALLA ANANDAKUMAR N, SANADHYA S K, and HASHMI M S. FPGA-based true random number generation using programmable delays in oscillator-rings[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(3): 570–574. doi: 10.1109/TCSII.2019.2919891
    [9]
    FRUSTACI F, SPAGNOLO F, PERRI S, et al. A high-speed FPGA-based true random number generator using metastability with clock managers[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2023, 70(2): 756–760. doi: 10.1109/TCSII.2022.3211278
    [10]
    ZHU Shaofeng, XI Wei, FAN Limin, et al. Sequence-oriented stochastic model of RO-TRNGs for entropy evaluation[J]. Chinese Journal of Electronics, 2020, 29(2): 371–377. doi: 10.1049/cje.2019.12.010
    [11]
    WOLD K and PETROVIĆ S. Behavioral model of TRNG based on oscillator rings implemented in FPGA[C]. 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, Cottbus, Germany, 2011: 163–166.
    [12]
    YAO Liang, LIANG Huaguo, ZHANG Hong, et al. A lightweight M_TRNG design based on MUX cell entropy using multiphase sampling[C]. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Singapore, 2022: 1–4.
    [13]
    LI Xinwei, SHEN Lei, and ZHAO Zhijin. Jitter test of multiphase DTTL[J]. Physics Procedia, 2012, 25: 623–629. doi: 10.1016/j.phpro.2012.03.135
    [14]
    CUI Jianguo, YI Maoxiang, CAO Di, et al. Design of true random number generator based on multi-stage feedback ring oscillator[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3): 1752–1756. doi: 10.1109/TCSII.2021.3111049
    [15]
    XILINX. Virtex-6 FPGA configurable logic block[R]. UG364 (v1.2), 2012.
    [16]
    罗芳, 欧庆于, 周学广, 等. 故障扰动下振荡环型真随机数发生器安全特性及度量方法研究[J]. 电子与信息学报, 2022, 44(6): 2093–2100. doi: 10.11999/JEIT210328

    LUO Fang, OU Qingyu, ZHOU Xueguang, et al. Research on the security characteristic and metric method for ring oscillatro-based true random number generator under fault disturbance[J]. Journal of Electronics &Information Technology, 2022, 44(6): 2093–2100. doi: 10.11999/JEIT210328
    [17]
    MA Gaoliang, LIANG Huaguo, YAO Liang, et al. A low-cost high-efficiency true random number generator on FPGAs[C]. 2018 IEEE 27th Asian Test Symposium (ATS), Hefei, China, 2018: 54–58.
    [18]
    MARTIN H, PERIS-LOPEZ P, TAPIADOR J E, et al. A new TRNG based on coherent sampling with self-timed rings[J]. IEEE Transactions on Industrial Informatics, 2016, 12(1): 91–100. doi: 10.1109/TII.2015.2502183
    [19]
    DI PATRIZIO STANCHIERI G, DE MARCELLIS A, PALANGE E, et al. A true random number generator architecture based on a reduced number of FPGA primitives[J]. AEU - International Journal of Electronics and Communications, 2019, 105: 15–23. doi: 10.1016/j.aeue.2019.03.006
    [20]
    WANG Yonggang, HUI Cong, LIU Chong, et al. Theory and implementation of a very high throughput true random number generator in field programmable gate array[J]. Review of Scientific Instruments, 2016, 87(4): 044704. doi: 10.1063/1.4945564
    [21]
    DEMIR K and ERGUN S. Random number generators based on irregular sampling and Fibonacci-Galois ring oscillators[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(10): 1718–1722. doi: 10.1109/TCSII.2019.2933280
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (416) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return