Citation: | LI Ying, LI Yanjie, CUI Xiaoxin, NI Qinglong, ZHOU Yinhao. Weight Quantization Method for Spiking Neural Networks and Analysis of Adversarial Robustness[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3218-3227. doi: 10.11999/JEIT230300 |
[1] |
谭铁牛: 人工智能的历史、现状和未来[EB/OL]. https://www.cas.cn/zjs/201902/t20190218_4679625.shtml, 2019.
Tan Tieniu. The historyk, present and future of artificial intelligence. Chinese Academy of Sciences[EB/OL]. https://www.cas.cn/zjs/201902/t20190218_4679625.shtml, 2019.
|
[2] |
LIU Aishan, LIU Xianglong, FAN Jiaxin, et al. Perceptual-sensitive GAN for generating adversarial patches[C]. The 33rd AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, USA, 2019: 127.
|
[3] |
ZHANG Guoming, YAN Chen, JI Xiaoyu, et al. DolphinAttack: Inaudible voice commands[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 103–117.
|
[4] |
WARREN T. Microsoft’s Outlook spam email filters are broken for many right now[EB/OL]. https://www.theverge.com/2023/2/20/23607056/microsoft-outlook-spam-email-filters-not-working-broken, 2023.
|
[5] |
董庆宽, 何浚霖. 基于信息瓶颈的深度学习模型鲁棒性增强方法[J]. 电子与信息学报, 2023, 45(6): 2197–2204. doi: 10.11999/JEIT220603
DONG Qingkuan and HE Junlin. Robustness enhancement method of deep learning model based on information bottleneck[J]. Journal of Electronics &Information Technology, 2023, 45(6): 2197–2204. doi: 10.11999/JEIT220603
|
[6] |
WEI Mingliang, YAYLA M, HO S Y, et al. Binarized SNNs: Efficient and error-resilient spiking neural networks through binarization[C]. 2021 IEEE/ACM International Conference on Computer Aided Design, Munich, Germany, 2021: 1–9.
|
[7] |
EL-ALLAMI R, MARCHISIO A, SHAFIQUE M, et al. Securing deep spiking neural networks against adversarial attacks through inherent structural parameters[C]. 2021 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2021: 774–779.
|
[8] |
SHARMIN S, RATHI N, PANDA P, et al. Inherent adversarial robustness of deep spiking neural networks: Effects of discrete input encoding and non-linear activations[C]. The 16th European Conference, Glasgow, UK, 2020: 399–414.
|
[9] |
KUNDU S, PEDRAM M, and BEEREL P A. HIRE-SNN: Harnessing the inherent robustness of energy-efficient deep spiking neural networks by training with crafted input noise[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 5209–5218.
|
[10] |
KIM Y, PARK H, MOITRA A, et al. Rate coding or direct coding: Which one is better for accurate, robust, and energy-efficient spiking neural networks?[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022: 71–75.
|
[11] |
O'CONNOR P and WELLING M. Deep spiking networks[J]. arXiv preprint arXiv: 1602.08323, 2016.
|
[12] |
RATHI N, SRINIVASAN G, PANDA P, et al. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation[C]. The 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[13] |
TAVANAEI A and MAIDA A. BP-STDP: Approximating backpropagation using spike timing dependent plasticity[J]. Neurocomputing, 2019, 330: 39–47. doi: 10.1016/j.neucom.2018.11.014
|
[14] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[15] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[16] |
SHAFAHI A, NAJIBI M, GHIASI A, et al. Adversarial training for free![C]. The 32nd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019.
|
[17] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[18] |
LI Yanjie, CUI Xiaoxin, ZHOU Yihao, et al. A comparative study on the performance and security evaluation of spiking neural networks[J]. IEEE Access, 2022, 10: 117572–117581. doi: 10.1109/ACCESS.2022.3220367
|
[19] |
KUANG Yisong, CUI Xiaoxin, ZHONG Yi, et al. A 64K-neuron 64M-1b-synapse 2.64 pJ/SOP neuromorphic chip with all memory on chip for spike-based models in 65nm CMOS[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(7): 2655–2659. doi: 10.1109/TCSII.2021.3052172
|