Advanced Search
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
YAN Aibin, SHEN Zhen, CUI Jie, HUANG Zhengfeng. Design of a Low-area and Low-delay Triple-Node-Upset Tolerant Latch[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3272-3283. doi: 10.11999/JEIT230114
Citation: YAN Aibin, SHEN Zhen, CUI Jie, HUANG Zhengfeng. Design of a Low-area and Low-delay Triple-Node-Upset Tolerant Latch[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3272-3283. doi: 10.11999/JEIT230114

Design of a Low-area and Low-delay Triple-Node-Upset Tolerant Latch

doi: 10.11999/JEIT230114
Funds:  The National Natural Science Foundation of China (62274052, 61974001)
  • Received Date: 2023-02-28
  • Rev Recd Date: 2023-07-04
  • Available Online: 2023-07-11
  • Publish Date: 2023-09-27
  • With the continuous development of nanoscale CMOS integrated circuits, latches are extremely susceptible to harsh radiation environment, and the multiple-node upset caused by radiation is becoming more and more serious. A Triple Node Upset (TNU) tolerant latch based on Dual-Interlocking CElls (DICEs) and dual-level C-elements is proposed. It includes five transmission gates, two DICEs, and three C-elements. The latch has a small number of transistors, which reduces greatly the hardware overhead of the latch to ensure low cost. Each DICE can be used to tolerate and recover from single-node upset, and the C-element has an error interception feature to mask erroneous values from DICEs. When any three nodes of the latch are upset, the latch can tolerate the TNU with the help of DICEs and C-elements. The simulation results using H-Simulation Program with Integrated Circuit Emphasis (HSPICE) show that, compared with the most advanced TNU tolerant latch designs, the delay is reduced by 64.65%, and the delay power area product is reduced by 65.07% for the proposed latch on average.
  • loading
  • [1]
    YAN Aibin, FENG Xiangfeng, HU Yuanjie, et al. Design of a triple-node-upset self-recoverable latch for aerospace applications in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1163–1171. doi: 10.1109/TAES.2019.2925448
    [2]
    黄正峰, 郭阳, 李雪筠, 等. 单粒子四点翻转自恢复加固锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(4): 632–639. doi: 10.3724/SP.J.1089.2021.18573

    HUANG Zhengfeng, GUO Yang, LI Xuejun, et al. Single-event quadruple-upset self-recoverable latch design[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(4): 632–639. doi: 10.3724/SP.J.1089.2021.18573
    [3]
    黄正峰, 曹迪, 崔建国, 等. 32 nm CMOS工艺的单粒子多点翻转加固锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(3): 346–355. doi: 10.3724/SP.J.1089.2021.18385

    HUANG Zhengfeng, CAO Di, CUI Jianguo, et al. Design of multiple node upset tolerant latch in 32 nm CMOS technology[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(3): 346–355. doi: 10.3724/SP.J.1089.2021.18385
    [4]
    郭靖, 李强, 宿晓慧, 等. 新型RHBD抗多节点翻转锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 963–973. doi: 10.3724/SP.J.1089.2021.18615

    GUO Jing, LI Qiang, SU Xiaohui, et al. Novel radiation hardening by design latch for tolerating multiple-node upset[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(6): 963–973. doi: 10.3724/SP.J.1089.2021.18615
    [5]
    黄正峰, 潘尚杰, 曹剑飞, 等. 32nm CMOS 工艺三点翻转自恢复锁存器设计[J]. 电子学报, 2021, 49(2): 394–400. doi: 10.12263/DZXB.20200530

    HUANG Zhengfeng, PAN Shangjie, CAO Jianfei, et al. Design of triple-node-upset self-recovery latch in 32 nm CMOS technology[J]. Acta Electronica Sinica, 2021, 49(2): 394–400. doi: 10.12263/DZXB.20200530
    [6]
    YAN Aibin, HU Yuanjie, CUI Jie, et al. Information assurance through redundant design: A novel TNU error-resilient latch for harsh radiation environment[J]. IEEE Transactions on Computers, 2020, 69(6): 789–799. doi: 10.1109/TC.2020.2966200
    [7]
    FAZELI M, MIREMADI S G, EJLALI A, et al. Low energy single event upset/single event transient-tolerant latch for deep submicron technologies[J]. IET Computers & Digital Techniques, 2009, 3(3): 289–303. doi: 10.1049/iet-cdt.2008.0099
    [8]
    EFTAXIOPOULOS N, AXELOS N, ZERVAKIS G, et al. Delta DICE: A double node upset resilient latch[C]. The 58th International Midwest Symposium on Circuits and Systems, Fort Collins, USA, 2015: 1–4.
    [9]
    KATSAROU K and TSIATOUHAS Y. Double node charge sharing SEU tolerant latch design[C]. The IEEE 20th International On-Line Testing Symposium, Platja d'Aro, Spain, 2014: 122–127.
    [10]
    XU Hui and ZENG Yun. Circuit and layout combination technique to enhance multiple nodes upset tolerance in latches[J]. IEICE Electronics Express, 2015, 12(9): 20150286. doi: 10.1587/elex.12.20150286
    [11]
    WATKINS A and TRAGOUDAS S. Radiation hardened latch designs for double and triple node upsets[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 616–626. doi: 10.1109/TETC.2017.2776285
    [12]
    CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874–2878. doi: 10.1109/23.556880
    [13]
    YAN Aibin, LAI Chaoping, ZHANG Yinlei, et al. Novel low cost, double-and-triple-node-upset-tolerant latch designs for nano-scale CMOS[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(1): 520–533. doi: 10.1109/TETC.2018.2871861
    [14]
    KUMAR C I and ANAND B. A highly reliable and energy-efficient triple-node-upset-tolerant latch design[J]. IEEE Transactions on Nuclear Science, 2019, 66(10): 2196–2206. doi: 10.1109/TNS.2019.2939380
    [15]
    YAN Aibin, XU Zhelong, FENG Xiangfeng, et al. Novel quadruple-node-upset-tolerant latch designs with optimized overhead for reliable computing in harsh radiation environments[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 404–413. doi: 10.1109/TETC.2020.3025584
    [16]
    YAN Aibin, LI Zhixing, CUI Jie, et al. Designs of two quadruple-node-upset self-recoverable latches for highly robust computing in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2885–2897. doi: 10.1109/TAES.2022.3219372
    [17]
    黄正峰, 姚慧杰, 李先东, 等. 一种高性能低功耗的双节点翻转加固锁存器[J]. 合肥工业大学学报:自然科学版, 2019, 42(12): 1649–1654. doi: 10.3969/j.issn.1003-5060.2019.12.012

    HUANG Zhengfeng, YAO Huijie, LI Xiandong, et al. HLDRL latch: A high performance, low cost, double node upset resilient latch[J]. Journal of Hefei University of Technology:Natural Science, 2019, 42(12): 1649–1654. doi: 10.3969/j.issn.1003-5060.2019.12.012
    [18]
    YAN Aibin, HUANG Zhengfeng, YI Maoxiang, et al. Double-node-upset-resilient latch design for nanoscale CMOS technology[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(6): 1978–1982. doi: 10.1109/TVLSI.2017.2655079
    [19]
    LIANG Huaguo, WANG Zhi, HUANG Zhengfeng, et al. Design of a radiation hardened latch for low-power circuits[C]. The IEEE 23rd Asian Test Symposium, Hangzhou, China, 2014: 19–24.
    [20]
    SHE Xiaoxuan and MCELVAIN K S. Time multiplexed triple modular redundancy for single event upset mitigation[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2443–2448. doi: 10.1109/TNS.2009.2021656
    [21]
    RAJAEI R, TABANDEH M, and FAZELI M. Single event multiple upset (SEMU) tolerant latch designs in presence of process and temperature variations[J]. Journal of Circuits, Systems and Computers, 2015, 24(1): 1550007. doi: 10.1142/S0218126615500073
    [22]
    LIU Xin. Multiple node upset-tolerant latch design[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(2): 387–392. doi: 10.1109/TDMR.2019.2912811
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (312) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return