Citation: | YAN Aibin, SHEN Zhen, CUI Jie, HUANG Zhengfeng. Design of a Low-area and Low-delay Triple-Node-Upset Tolerant Latch[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3272-3283. doi: 10.11999/JEIT230114 |
[1] |
YAN Aibin, FENG Xiangfeng, HU Yuanjie, et al. Design of a triple-node-upset self-recoverable latch for aerospace applications in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1163–1171. doi: 10.1109/TAES.2019.2925448
|
[2] |
黄正峰, 郭阳, 李雪筠, 等. 单粒子四点翻转自恢复加固锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(4): 632–639. doi: 10.3724/SP.J.1089.2021.18573
HUANG Zhengfeng, GUO Yang, LI Xuejun, et al. Single-event quadruple-upset self-recoverable latch design[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(4): 632–639. doi: 10.3724/SP.J.1089.2021.18573
|
[3] |
黄正峰, 曹迪, 崔建国, 等. 32 nm CMOS工艺的单粒子多点翻转加固锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(3): 346–355. doi: 10.3724/SP.J.1089.2021.18385
HUANG Zhengfeng, CAO Di, CUI Jianguo, et al. Design of multiple node upset tolerant latch in 32 nm CMOS technology[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(3): 346–355. doi: 10.3724/SP.J.1089.2021.18385
|
[4] |
郭靖, 李强, 宿晓慧, 等. 新型RHBD抗多节点翻转锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 963–973. doi: 10.3724/SP.J.1089.2021.18615
GUO Jing, LI Qiang, SU Xiaohui, et al. Novel radiation hardening by design latch for tolerating multiple-node upset[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(6): 963–973. doi: 10.3724/SP.J.1089.2021.18615
|
[5] |
黄正峰, 潘尚杰, 曹剑飞, 等. 32nm CMOS 工艺三点翻转自恢复锁存器设计[J]. 电子学报, 2021, 49(2): 394–400. doi: 10.12263/DZXB.20200530
HUANG Zhengfeng, PAN Shangjie, CAO Jianfei, et al. Design of triple-node-upset self-recovery latch in 32 nm CMOS technology[J]. Acta Electronica Sinica, 2021, 49(2): 394–400. doi: 10.12263/DZXB.20200530
|
[6] |
YAN Aibin, HU Yuanjie, CUI Jie, et al. Information assurance through redundant design: A novel TNU error-resilient latch for harsh radiation environment[J]. IEEE Transactions on Computers, 2020, 69(6): 789–799. doi: 10.1109/TC.2020.2966200
|
[7] |
FAZELI M, MIREMADI S G, EJLALI A, et al. Low energy single event upset/single event transient-tolerant latch for deep submicron technologies[J]. IET Computers & Digital Techniques, 2009, 3(3): 289–303. doi: 10.1049/iet-cdt.2008.0099
|
[8] |
EFTAXIOPOULOS N, AXELOS N, ZERVAKIS G, et al. Delta DICE: A double node upset resilient latch[C]. The 58th International Midwest Symposium on Circuits and Systems, Fort Collins, USA, 2015: 1–4.
|
[9] |
KATSAROU K and TSIATOUHAS Y. Double node charge sharing SEU tolerant latch design[C]. The IEEE 20th International On-Line Testing Symposium, Platja d'Aro, Spain, 2014: 122–127.
|
[10] |
XU Hui and ZENG Yun. Circuit and layout combination technique to enhance multiple nodes upset tolerance in latches[J]. IEICE Electronics Express, 2015, 12(9): 20150286. doi: 10.1587/elex.12.20150286
|
[11] |
WATKINS A and TRAGOUDAS S. Radiation hardened latch designs for double and triple node upsets[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 616–626. doi: 10.1109/TETC.2017.2776285
|
[12] |
CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874–2878. doi: 10.1109/23.556880
|
[13] |
YAN Aibin, LAI Chaoping, ZHANG Yinlei, et al. Novel low cost, double-and-triple-node-upset-tolerant latch designs for nano-scale CMOS[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(1): 520–533. doi: 10.1109/TETC.2018.2871861
|
[14] |
KUMAR C I and ANAND B. A highly reliable and energy-efficient triple-node-upset-tolerant latch design[J]. IEEE Transactions on Nuclear Science, 2019, 66(10): 2196–2206. doi: 10.1109/TNS.2019.2939380
|
[15] |
YAN Aibin, XU Zhelong, FENG Xiangfeng, et al. Novel quadruple-node-upset-tolerant latch designs with optimized overhead for reliable computing in harsh radiation environments[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 404–413. doi: 10.1109/TETC.2020.3025584
|
[16] |
YAN Aibin, LI Zhixing, CUI Jie, et al. Designs of two quadruple-node-upset self-recoverable latches for highly robust computing in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2885–2897. doi: 10.1109/TAES.2022.3219372
|
[17] |
黄正峰, 姚慧杰, 李先东, 等. 一种高性能低功耗的双节点翻转加固锁存器[J]. 合肥工业大学学报:自然科学版, 2019, 42(12): 1649–1654. doi: 10.3969/j.issn.1003-5060.2019.12.012
HUANG Zhengfeng, YAO Huijie, LI Xiandong, et al. HLDRL latch: A high performance, low cost, double node upset resilient latch[J]. Journal of Hefei University of Technology:Natural Science, 2019, 42(12): 1649–1654. doi: 10.3969/j.issn.1003-5060.2019.12.012
|
[18] |
YAN Aibin, HUANG Zhengfeng, YI Maoxiang, et al. Double-node-upset-resilient latch design for nanoscale CMOS technology[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(6): 1978–1982. doi: 10.1109/TVLSI.2017.2655079
|
[19] |
LIANG Huaguo, WANG Zhi, HUANG Zhengfeng, et al. Design of a radiation hardened latch for low-power circuits[C]. The IEEE 23rd Asian Test Symposium, Hangzhou, China, 2014: 19–24.
|
[20] |
SHE Xiaoxuan and MCELVAIN K S. Time multiplexed triple modular redundancy for single event upset mitigation[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2443–2448. doi: 10.1109/TNS.2009.2021656
|
[21] |
RAJAEI R, TABANDEH M, and FAZELI M. Single event multiple upset (SEMU) tolerant latch designs in presence of process and temperature variations[J]. Journal of Circuits, Systems and Computers, 2015, 24(1): 1550007. doi: 10.1142/S0218126615500073
|
[22] |
LIU Xin. Multiple node upset-tolerant latch design[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(2): 387–392. doi: 10.1109/TDMR.2019.2912811
|