Citation: | YAN Xinkai, DING Sheng. Adaptive Image Interpolation Algorithm and Acceleration Engine Co-Design[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3284-3294. doi: 10.11999/JEIT221503 |
[1] |
MEIJERING E H W, ZUIDERVELD K J, and VIERGEVER M A. Image reconstruction by convolution with symmetrical piecewise nth-order polynomial kernels[J]. IEEE Transactions on Image Processing, 1999, 8(2): 192–201. doi: 10.1109/83.743854
|
[2] |
KEYS R G. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153–1160. doi: 10.1109/TASSP.1981.1163711
|
[3] |
KWOK W and SUN H. Multi-directional interpolation for spatial error concealment[J]. IEEE Transactions on Consumer Electronics, 1993, 39(3): 455–460. doi: 10.1109/30.234620
|
[4] |
LI Xin and ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521–1527. doi: 10.1109/83.951537
|
[5] |
CHEN Meijuan, HUANG C H, and LEE W L. A fast edge-oriented algorithm for image interpolation[J]. Image and Vision Computing, 2005, 23(9): 791–798. doi: 10.1016/j.imavis.2005.05.005
|
[6] |
ZHANG Xiangjun and WU Xiaolin. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Transactions on Image Processing, 2008, 28(6): 887–896. doi: 10.1109/TIP.2008.924279
|
[7] |
JAKHETIYA V, KUMAR A, and TIWARI A K. Image interpolation by adaptive 2-D autoregressive modeling[C]. Proceedings of SPIE 7546, Second International Conference on Digital Image Processing, Singapore, 2010.
|
[8] |
LIU Yiwei, JIANG Zhuqing, WANG Yibo, et al. Single-frame reconstruction for improvement of off-axis digital holographic imaging based on image interpolation[J]. Optics Letters, 2020, 45(24): 6623–6626. doi: 10.1364/OL.405578
|
[9] |
WANG Qiang, TANG Xiaoou, and SHUM H. Patch based blind image super resolution[C]. Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, 2005: 709–716.
|
[10] |
CHAN T M, ZHANG Junping, PU Jian, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J]. Pattern Recognition Letters, 2009, 30(5): 494–502. doi: 10.1016/j.patrec.2008.11.008
|
[11] |
GAO Xinbo, ZHANG Kaibing, TAO Dacheng, et al. Joint learning for single-image super-resolution via a coupled constraint[J]. IEEE Transactions on Image Processing, 2012, 21(2): 469–480. doi: 10.1109/TIP.2011.2161482
|
[12] |
JI Jiahuan, ZHONG Baojiang, and MA Kaikuang. Image interpolation using multi-scale attention-aware inception network[J]. IEEE Transactions on Image Processing, 2020, 29: 9413–9428. doi: 10.1109/TIP.2020.3026632
|
[13] |
NIU Ben, WEN Weilei, REN Wenqi, et al. Single image super-resolution via a holistic attention network[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 191–207.
|
[14] |
WEI Pengxu, XIE Ziwei, LU Hannan, et al. Component divide-and-conquer for real-world image super-resolution[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 101–117.
|
[15] |
DENG Xin, ZHANG Yutong, XU Mai, et al. Deep coupled feedback network for joint exposure fusion and image super-resolution[J]. IEEE Transactions on Image Processing, 2021, 30: 3098–3112. doi: 10.1109/TIP.2021.3058764
|
[16] |
LIN Yuting, LIU Wei, CAI Xiaowen, et al. A CNN-based quality model for image interpolation[C]. Proceedings of 2020 Cross Strait Radio Science & Wireless Technology Conference, Fuzhou, China, 2020: 1–3.
|
[17] |
AMD. AMD FidelityFX super resolution (FSR): Changing the game in just 4 months[EB/OL]. https://www.amd.com/zh-hans/technologies/fidelityfx-super-resolution, 2021.
|
[18] |
Andrew Burnes, nvidia-image-scaler-dlss-rtx-november-2021-updates[EB/OL]. https://www.nvidia.com/en-us/geforce/news/gfecnt/202111/nvidia-image-scaler-dlss-rtx-november-2021-updates/, 2021.
|
[19] |
KHALEDYAN D, AMIRANY A, JAFARI K, et al. Low-cost implementation of bilinear and bicubic image interpolation for real-time image super-resolution[C]. Proceedings of 2020 IEEE Global Humanitarian Technology Conference, Seattle, USA, 2020: 1–5.
|
[20] |
王康, 杨瑞祺, 杨依忠, 等. 基于二阶牛顿插值的图像自适应缩放设计及实现[J]. 计算机应用与软件, 2020, 37(9): 126–132,138. doi: 10.3969/j.issn.1000-386x.2020.09.021
WANG Kang, YANG Ruiqi, YANG Yizhong, et al. Design and implementation of image adaptive scaling based on second order newton interpolation[J]. Computer Applications and Software, 2020, 37(9): 126–132,138. doi: 10.3969/j.issn.1000-386x.2020.09.021
|
[21] |
BOUKHTACHE S, BLAYSAT B, GRÉDIAC M, et al. FPGA-based architecture for bi-cubic interpolation: The best trade-off between precision and hardware resource consumption[J]. Journal of Real-Time Image Processing, 2021, 18(3): 901–911. doi: 10.1007/s11554-020-01035-1
|
[22] |
SHEN H Y, LEE Y C, TONG T W, et al. 4.7 A 91mW 90fps super-resolution processor for full HD images[C]. Proceedings of 2021 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2021: 66–68.
|
[23] |
陆志芳, 钟宝江. 基于预测梯度的图像插值算法[J]. 自动化学报, 2018, 44(6): 1072–1085. doi: 10.16383/j.aas.2017.c160793
LU Zhifang and ZHONG Baojiang. Image interpolation with predicted gradients[J]. Acta Automatica Sinica, 2018, 44(6): 1072–1085. doi: 10.16383/j.aas.2017.c160793
|
[24] |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 586–595.
|
[25] |
吴世豪, 罗小华, 张建炜, 等. 基于FPGA的新边缘指导插值算法硬件实现[J]. 浙江大学学报:工学版, 2018, 52(11): 2226–2232. doi: 10.3785/j.issn.1008-973X.2018.11.022
WU Shihao, LUO Xiaohua, ZHANG Jianwei, et al. FPGA-based hardware implementation of new edge-directed interpolation algorithm[J]. Journal of Zhejiang University:Engineering Science, 2018, 52(11): 2226–2232. doi: 10.3785/j.issn.1008-973X.2018.11.022
|
[26] |
LEE J, SHIN D, LEE J, et al. A full HD 60 fps CNN super resolution processor with selective caching based layer fusion for mobile devices[C]. Proceedings of 2019 Symposium on VLSI Circuits. Kyoto, Japan, 2019: C302–C303.
|