Advanced Search
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
GUO Zhongjie, WANG Yangle, XU Ruiming, LIU Suiyang. High-speed Fully Differential Two-step ADC Design Method for CMOS Image Sensor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3410-3419. doi: 10.11999/JEIT221420
Citation: GUO Zhongjie, WANG Yangle, XU Ruiming, LIU Suiyang. High-speed Fully Differential Two-step ADC Design Method for CMOS Image Sensor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3410-3419. doi: 10.11999/JEIT221420

High-speed Fully Differential Two-step ADC Design Method for CMOS Image Sensor

doi: 10.11999/JEIT221420
Funds:  The National Natural Science Foundation of China (62171367), The Key Research and Development Plan of Shaanxi Province (2021GY-060), Shaanxi Innovation Capability Support Project (2022TD-39)
  • Received Date: 2022-11-11
  • Rev Recd Date: 2023-05-25
  • Available Online: 2023-06-08
  • Publish Date: 2023-09-27
  • Due to the common speed bottleneck problem of traditional Single-Slope Analog-to-Digital Converter (SS ADC) and serial two-step ADC, the application requirements of high frame rate CMOS Image Sensor (CIS) in the industry have not been met. In this paper, a high-speed fully differential two-step ADC design method for CIS is proposed. The ADC design method is based on differential ramp and Time-to-Digital Conversion (TDC) technology. A parallel conversion mode is formed, which is different from serial conversion, and the robustness of the system is ensured due to the existence of differential ramps. Focusing on the inconsistency between traditional TDC technology and single-slope ADC, a TDC technology based on level coding is proposed, which completes time-to-digital conversion in the last clock cycle of A/D conversion, and realizes a two-step conversion process at another level. Based on the 55 nm 1P4M CMOS experimental platform, this paper completes the circuit design, layout design and test verification of the proposed design method. Under the design environment of analog voltage 3.3 V, digital voltage 1.2 V, clock frequency 100MHz, and dynamic input range 1.6 V, this design is a 12 bit ADC, the conversion time is 480 ns, the column-level power consumption is 62 μW, the DNL (Differential Non-Linearity is measured in the Least Significant Bit) is +0.6/–0.6, the INL (Integral Non-Linearity is measured in the Least Significant Bit) is +1.2/–1.4, and the Signal-to-Noise Distortion Ratio (SNDR) reaches 70.08 dB. Compared with the existing advanced single-slope ADC, the ADC conversion speed is increased by more than 52%, which is a large area array with high frame rate. It provides an effective solution for the implementation of high frame frequency CIS.
  • loading
  • [1]
    LEVSKI D, WÄNY M, and CHOUBEY B. A 1-μs ramp time 12-bit column-parallel flash TDC-interpolated single-slope ADC with digital delay-element calibration[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(1): 54–67. doi: 10.1109/TCSI.2018.2846592
    [2]
    KAUR A, MISHRA D, and SARKAR M. A 12-bit, 2.5-bit/phase column-parallel cyclic ADC[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(1): 248–252. doi: 10.1109/TVLSI.2018.2871341
    [3]
    OKADA C, UEMURA K, HUNG L, et al. 7.6 a high-speed back-illuminated stacked CMOS image sensor with column-parallel kT/C-cancelling S&H and delta-sigma ADC[C] 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021: 116–118.
    [4]
    TANG Fang, CHEN D G, WANG Bo, et al. Low-power CMOS image sensor based on column-parallel single-slope/SAR quantization scheme[J]. IEEE Transactions on Electron Devices, 2013, 60(8): 2561–2566. doi: 10.1109/TED.2013.2268207
    [5]
    NIE Kaiming, ZHA Wanbin, SHI Xiaolin, et al. A single slope ADC with row-wise noise reduction technique for CMOS image sensor[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(9): 2873–2882. doi: 10.1109/TCSI.2020.2979321
    [6]
    HAM S H, HAN G, and LEE D M. Image sensor using auto-calibrated ramp signal for improved image quality and driving method thereof[P]. USA patent, 7679542, 2010.
    [7]
    LIANG J and JOHNS D A. A frequency-scalable 15-bit incremental ADC for low power sensor applications[C]. 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010: 2418–2421.
    [8]
    SAITO W, IIZUKA Y, KATO N, et al. A low noise and linearity improvement CMOS image sensor for surveillance camera with skew-relaxation local multiply circuit and on-chip testable ramp generator[C]. 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), Busan, Korea, 2021: 1–3.
    [9]
    PARK I, JO W, PARK C, et al. A 640×640 fully dynamic CMOS image sensor for always-on object recognition[C]. 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019: C214–C215.
    [10]
    PARK S Y and KIM H J. CMOS image sensor with two-step single-slope ADC using differential ramp generator[J]. IEEE Transactions on Electron Devices, 2021, 68(10): 4966–4971. doi: 10.1109/TED.2021.3102003
    [11]
    LYU Tao, YAO Suying, NIE Kaiming, et al. A 12-bit high-speed column-parallel two-step single-slope Analog-to-Digital Converter (ADC) for CMOS image sensors[J]. Sensors, 2014, 14(11): 21603–21625. doi: 10.3390/s141121603
    [12]
    CHEN H S, TSENG C J, CHEN Chengming, et al. A 34.3 dB SNDR, 2.3GS/s, Sub-radix pipeline ADC using incomplete settling technique with background radix detector[J]. Analog Integrated Circuits and Signal Processing, 2021, 107(1): 39–50. doi: 10.1007/s10470-021-01814-1
    [13]
    LEE K J, KIM C K, EOM J W, et al. Image sensor with analog-to-digital converter that generates a variable slope ramp signal[P]. USA patent, 6545624, 2003.
    [14]
    ZHANG Qihui, NING Ning, LI Jing, et al. A high area-efficiency 14-bit SAR ADC with hybrid capacitor DAC for array sensors[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 4396–4408. doi: 10.1109/TCSI.2020.2998473
    [15]
    SANTOS M, HORTA N, and GUILHERME J. An 8bit logarithmic AD converter using cross-coupled inverters and a time-to-digital converter[C]. 2016 12th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, 2016: 1–4.
    [16]
    唐枋, 唐建国. 用于CMOS图像传感器的12位低功耗单斜坡模数转换器设计[J]. 电子学报, 2013, 41(2): 352–356.

    TANG Fang and TANG Jianguo. 12Bit low power single slope ADC design for CMOS image sensor[J] Acta Electronica Sinica, 2013, 41(2): 352–356.
    [17]
    高静, 姚素英, 徐江涛, 等. 高速列并行10位模数转换电路的设计[J]. 天津大学学报, 2010, 43(6): 489–494. doi: 10.3969/j.issn.0493-2137.2010.06.004

    GAO Jing, YAO Suying, XU Jiangtao, et al. Design of high speed column-parallel 10-bit ADC[J]. Journal of Tianjin University, 2010, 43(6): 489–494. doi: 10.3969/j.issn.0493-2137.2010.06.004
    [18]
    PARK K, YEOM S, and KIM S Y. Ultra-low power CMOS image sensor with two-step logical shift algorithm-based correlated double sampling scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(11): 3718–3727. doi: 10.1109/TCSI.2020.3012980
    [19]
    张倩, 郭仲杰, 余宁梅, 等. CMOS图像传感器列并行单斜式ADC回踢噪声自补偿方法[J]. 武汉大学学报(理学版), 2022, 68(5): 574–580. doi: 10.14188/j.1671-8836.2022.0030

    ZHANG Qian, GUO Zhongjie, YU Ningmei, et al. Self-compensation method for kickback noise of CMOS image sensor column parallel ramp ADC[J]. Journal of Wuhan University (Natural Science Edition), 2022, 68(5): 574–580. doi: 10.14188/j.1671-8836.2022.0030
    [20]
    张鹤玖, 余宁梅, 吕楠, 等. 一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器[J]. 电子与信息学报, 2019, 41(6): 1466–1471. doi: 10.11999/JEIT180752

    ZHANG Hejiu, YU Ningmei, LÜ Nan, et al. A 10 bit fully differential dual slope analog-to-digital converter for time delay integration CMOS image sensors[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1466–1471. doi: 10.11999/JEIT180752
    [21]
    HINTON H, JANG H, WU Wenxuan, et al. A 200 x 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters[C]. 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2022: 1–3,
    [22]
    ZHANG Qihui, NING Ning, LI Jing, et al. A 12-bit column-parallel two-step single-slope ADC with a foreground calibration for CMOS image sensors[J]. IEEE Access, 2020, 8: 172467–172480. doi: 10.1109/ACCESS.2020.3025153
    [23]
    LEE J, PARK H, SONG B, et al. High frame-rate VGA CMOS image sensor using non-memory capacitor two-step single-slope ADCs[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2015, 62(9): 2147–2155. doi: 10.1109/TCSI.2015.2451791
    [24]
    郭仲杰, 许睿明, 程新齐, 等. 面向亿级CMOS图像传感器的高速全并行两步式ADC设计方法[J]. 电子学报, 待发表. doi: 10.12263/DZXB20220022.

    GUO Zhongjie, XU Ruiming, CHENG Xinqi, et al. Design method of high-speed fully parallel two-step ADC for CMOS image sensor[J]. Acta Electronica Sinica, To be published. doi: 10.12263/DZXB20220022.
    [25]
    MALASS I, UHRING W, LE NORMAND J P, et al. 10-ps Resolution hybrid time to digital converter in a 0.18 μm CMOS technology[C]. 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS), Trois-Rivieres, Canada, 2014: 105–108.
    [26]
    HUANG Huihua and SECHEN C. A 22mW 227Msps 11b self-tuning ADC based on time-to-digital conversion[C]. 2009 IEEE Dallas Circuits and Systems Workshop (DCAS), Richardson, USA, 2009: 1–4.
    [27]
    GUO Zhongjie, YU Ningmei, and WU Longsheng. A synchronous driving approach based on adaptive delay phase-locked loop for stitching CMOS image sensor[J]. IEICE Electronics Express, 2020, 17(3): 20190642. doi: 10.1587/elex.16.20190642
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (609) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return