Citation: | GU Xiaofeng, GUAN Qidong, YU Zhiguo. Absolute Value Circuit for Tanh Activation Function in Computing in Memory[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3350-3358. doi: 10.11999/JEIT221257 |
[1] |
SZE V, CHEN Y H, EMER J, et al. Hardware for machine learning: Challenges and opportunities[C]. 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, USA, 2017: 1–8.
|
[2] |
KIM H, CHUNG J, SHIN K, et al. Live demonstration: A neural processor for AI acceleration[C]. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021: 1.
|
[3] |
ZHOU Yushan and LI Wenxin. Discovering of game AIs’ characters using a neural network based AI imitator for AI clustering[C]. 2020 IEEE Conference on Games (CoG), Osaka, Japan, 2020: 198–205.
|
[4] |
顾晓峰, 刘彦航, 虞致国, 等. 一种面向基于闪存的脉冲卷积神经网络的模拟神经元电路[J]. 电子与信息学报, 2023, 45(1): 116–124. doi: 10.11999/JEIT211249
GU Xiaofeng, LIU Yanhang, YU Zhiguo, et al. An analog neuron circuit for spiking convolutional neural networks based on flash array[J]. Journal of Electronics &Information Technology, 2023, 45(1): 116–124. doi: 10.11999/JEIT211249
|
[5] |
MOONS B and VERHELST M. A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets[C]. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, USA, 2016: 1–2.
|
[6] |
CHIU C C, SAINATH T N, WU Yonghui, et al. State-of-the-art speech recognition with sequence-to-sequence models[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 4774–4778.
|
[7] |
TANG Tianqi, XIA Lixue, LI Boxun, et al. Binary convolutional neural network on RRAM[C]. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 2017: 782–787.
|
[8] |
ZHANG Jintao, WANG Zhuo, and VERMA N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 915–924. doi: 10.1109/JSSC.2016.2642198
|
[9] |
BISWAS A and CHANDRAKASAN A P. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications[C]. 2018 IEEE International Solid - State Circuits Conference-(ISSCC), San Francisco, USA, 2018: 488–490.
|
[10] |
XUE Chengxin, CHEN Weihao, LIU J Y, et al. 24.1 A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel MAC computing time for CNN based AI edge processors[C]. 2019 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2019: 388–390.
|
[11] |
WU T F, LI Haitong, HUANG Pingchen, et al. Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study[C]. 2018 IEEE International Solid - State Circuits Conference (ISSCC), San Francisco, USA, 2019: 492–494.
|
[12] |
GUO Xinjie, BAYAT F M, BAVANDPOUR M, et al. Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology[C]. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2017: 6.5. 1–6.5. 4.
|
[13] |
YAN Bonan, YANG Qing, CHEN Weihao, et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation[C]. 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019: T86–T87.
|
[14] |
VEIRE L V, DE BOOM C, and DE BIE T. Sigmoidal NMFD: Convolutional NMF with saturating activations for drum mixture decomposition[J]. Electronics, 2021, 10(3): 284. doi: 10.3390/electronics10030284
|
[15] |
SHAMSI J, AMIRSOLEIMANI A, MIRZAKUCHAKI S, et al. Hyperbolic tangent passive resistive-type neuron[C]. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015: 581–584.
|
[16] |
SHAKIBA F M and ZHOU Mengchu. Novel analog implementation of a hyperbolic tangent neuron in artificial neural networks[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10856–10867. doi: 10.1109/TIE.2020.3034856
|
[17] |
LIU Feng, ZHANG Bowen, CHEN Gang, et al. A novel configurable high-precision and low-cost circuit design of sigmoid and tanh activation function[C]. 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Zhuhai, China, 2021: 222–223.
|
[18] |
HAENSCH W, GOKMEN T, and PURI R. The next generation of deep learning hardware: Analog computing[J]. Proceedings of the IEEE, 2019, 107(1): 108–122. doi: 10.1109/JPROC.2018.2871057
|
[19] |
JOUBERT A, BELHADJ B, TEMAM O, et al. Hardware spiking neurons design: Analog or digital[C]. The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 2012: 1–5.
|
[20] |
KUMNGERN M. Absolute value circuit for biological signal processing applications[C]. 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, Thailand, 2013: 601–604.
|
[21] |
IRANMANESH S, RAIKOS G, ZHOU Jiang, et al. CMOS implementation of a low power absolute value comparator circuit[C]. 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), Vancouver, Canada, 2016: 1–4.
|