Citation: | SHI Jiangyi, WEN Cong, LIU Hongjin, WANG Zekun, ZHANG Shaolin, MA Peijun, LI Kang. Hardware Trojan Detection for Gate-level Netlists Based on Graph Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3253-3262. doi: 10.11999/JEIT221201 |
[1] |
HUANG Zhao, WANG Quan, CHEN Yin, et al. A survey on machine learning against hardware Trojan attacks: Recent advances and challenges[J]. IEEE Access, 2020, 8: 10796–10826. doi: 10.1109/ACCESS.2020.2965016
|
[2] |
ELSHAMY M, DI NATALE G, SAYED A, et al. Digital-to-analog hardware Trojan attacks[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(2): 573–586. doi: 10.1109/TCSI.2021.3116806
|
[3] |
LYU Yangdi and MISHRA P. Automated trigger activation by repeated maximal clique sampling[C]. The 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 2020.
|
[4] |
JIANG B C, YANG W G, and YANG C Y. An SPC-based forward-backward algorithm for arrhythmic beat detection and classification[J]. Industrial Engineering and Management Systems, 2013, 12(4): 380–388. doi: 10.7232/iems.2013.12.4.380
|
[5] |
SHAKYA B, HE T, SALMANI H, et al. Benchmarking of hardware Trojans and maliciously affected circuits[J]. Journal of Hardware and Systems Security, 2017, 1(1): 85–102. doi: 10.1007/s41635-017-0001-6
|
[6] |
LIU Qiang, ZHAO Pengyong, and CHEN Fuqiang. A hardware Trojan detection method based on structural features of Trojan and host circuits[J]. IEEE Access, 2019, 7: 44632–44644. doi: 10.1109/ACCESS.2019.2908088
|
[7] |
SHEN Haihua, TAN Huazhe, LI Huawei, et al. LMDet: A “naturalness” statistical method for hardware Trojan detection[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(4): 720–732. doi: 10.1109/TVLSI.2017.2781423
|
[8] |
LU Renjie, SHEN Haihua, SU Yu, et al. GramsDet: Hardware Trojan detection based on recurrent neural network[C]. 2019 IEEE 28th Asian Test Symposium (ATS), Kolkata, India, 2019.
|
[9] |
严迎建, 赵聪慧, 刘燕江. 基于多维结构特征的硬件木马检测技术[J]. 电子与信息学报, 2021, 43(8): 2128–2139. doi: 10.11999/JEIT210003
YAN Yingjian, ZHAO Conghui, and LIU Yanjiang. Hardware Trojan detection based on multiple structural features[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2128–2139. doi: 10.11999/JEIT210003
|
[10] |
张颖, 李森, 陈鑫, 等. 基于Xgboost的混合模式门级硬件木马检测方法[J]. 电子与信息学报, 2021, 43(10): 3050–3057. doi: 10.11999/JEIT200874
ZHANG Ying, LI Sen, CHEN Xin, et al. Hybrid multi-level hardware Trojan detection method for gate-level netlists based on XGBoost[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3050–3057. doi: 10.11999/JEIT200874
|
[11] |
SHI Jiangyi, ZHANG Xinyuan, MA Peijun, et al. Hardware Trojan designs based on high-low probability and partitioned combinational logic with a malicious reset signal[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(6): 2152–2156. doi: 10.1109/TCSII.2020.3044721
|
[12] |
HASEGAWA K, YANAGISAWA M, and TOGAWA N. A hardware-Trojan classification method utilizing boundary net structures[C]. 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2018: 1–4.
|
[13] |
KOK C H, OOI C Y, INOUE M, et al. Net classification based on testability and netlist structural features for hardware Trojan detection[C]. 2019 IEEE 28th Asian Test Symposium (ATS), Kolkata, India, 2019: 105–110.
|
[14] |
YASAEI R, YU S Y, and AL FARUQUE M A. GNN4TJ: Graph neural networks for hardware Trojan detection at register transfer level[C]. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021: 1504–1509.
|
[15] |
MURALIDHAR N, ZUBAIR A, WEIDLER N, et al. Contrastive graph convolutional networks for hardware Trojan detection in third party IP cores[C]. 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Tysons Corner, USA, 2021: 181–191.
|
[16] |
CHOWDHURY S D, YANG Kaixin, and NUZZO P. ReIGNN: State register identification using graph neural networks for circuit reverse engineering[C]. 2021 IEEE/ACM International Conference on Computer Aided Design (ICCAD), Munich, Germany, 2021: 1–9.
|
[17] |
HAMILTON W L. Graph Representation Learning[M]. Switzerland: Springer, 2020: 1–159.
|
[18] |
KURIHARA T and TOGAWA N. Hardware-Trojan classification based on the structure of trigger circuits utilizing random forests[C]. Proceedings of 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS), Torino, Italy, 2021: 1–4.
|
[19] |
HASEGAWA K, HIDANO S, NOZAWA K, et al. R-HTDetector: Robust hardware-Trojan detection based on adversarial training[J]. arXiv preprint arXiv: 2205.13702, 2022.
|
[20] |
Trust-HUB[EB/OL]. https://www.trust-hub.org/.
|
[21] |
WANG Minjie, ZHENG Da, YE Zihao, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks[J]. arXiv preprint arXiv: 1909.01315, 2019.
|
[22] |
YU Shichao, GU Chongyan, LIU Weiqiang, et al. Deep learning-based hardware Trojan detection with block-based netlist information extraction[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(4): 1837–1853. doi: 10.1109/TETC.2021.3116484
|