Citation: | CHEN Xinhui, NI Li, LIU Zijian, ZHANG Yuejun, CHEN Qilai, LIU Gang. Design of Highly Robust Glitch-Physical Uunclonable Functions Based on ZnO Memristor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3331-3339. doi: 10.11999/JEIT221086 |
[1] |
GENKIN D, PIPMAN I, and TROMER E. Get your hands off my laptop: Physical side-channel key-extraction attacks on PCs[J]. Journal of Cryptographic Engineering, 2015, 5(2): 95–112. doi: 10.1007/s13389-015-0100-7
|
[2] |
WANG Xiaoxiao and TEHRANIPOOR M. Novel physical unclonable function with process and environmental variations[C]. 2010 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2010: 1065–1070.
|
[3] |
ZHAO Qiang, WU Yiheng, ZHAO Xiao, et al. A 1036-F2/bit high reliability temperature compensated cross-coupled comparator-based PUF[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(6): 1449–1460. doi: 10.1109/TVLSI.2020.2980306
|
[4] |
HE Zhangqing, WAN Meilin, DENG Jie, et al. A reliable strong PUF based on switched-capacitor circuit[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(6): 1073–1083. doi: 10.1109/TVLSI.2018.2806041
|
[5] |
GOVINDARAJ R, GHOSH S, and KATKOORI S. Design, analysis and application of embedded resistive RAM based strong arbiter PUF[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 17(6): 1232–1242. doi: 10.1109/TDSC.2018.2866425
|
[6] |
AVVARU S V S, ZENG Ziqing, and PARHI K K. Homogeneous and heterogeneous feed-forward XOR physical unclonable functions[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2485–2498. doi: 10.1109/TIFS.2020.2968113
|
[7] |
MANDRY H, HERKLE A, MÜELICH S, et al. Normalization and multi-valued symbol extraction from RO-PUFs for enhanced uniform probability distribution[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3372–3376. doi: 10.1109/TCSII.2020.2980748
|
[8] |
YE Jing, GUO Qingli, HU Yu, et al. Modeling attacks on strong physical unclonable functions strengthened by random number and weak PUF[C]. 2018 IEEE 36th VLSI Test Symposium (VTS), San Francisco, USA, 2018: 1–6,
|
[9] |
张跃军, 汪鹏君, 李刚, 等. 基于信号传输理论的Glitch物理不可克隆函数电路设计[J]. 电子与信息学报, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312
ZHANG Yuejun, WANG Pengjun, LI Gang, et al. Design of glitch physical unclonable functions circuit based on signal transmission theory[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312
|
[10] |
NOZAKI Y, TAKEMOTO S, IKEZAKI Y, et al. Performance evaluation of unrolled cipher based Glitch PUF implemented on Virtex-7[C]. 2021 International Symposium on Devices, Circuits and Systems (ISDCS), Higashihiroshima, Japan, 2021: 1–4.
|
[11] |
NI Li, WANG Pengjun, ZHANG Yuejun, et al. A reliable multi-information entropy Glitch PUF using schmitt trigger sampling method for IoT security[C]. 2021 IEEE 14th International Conference on ASIC (ASICON), Kunming, China, 2021: 1–4.
|
[12] |
董永兴, 徐金甫, 李军伟. 基于延时控制的Glitch PUF电路设计[J]. 计算机应用与软件, 2020, 37(11): 311–315,333. doi: 10.3969/j.issn.1000-386x.2020.11.050
DONG Yongxing, XU Jinfu, and LI Junwei. Design of Glitch PUF based on delay control[J]. Computer Applications and Software, 2020, 37(11): 311–315,333. doi: 10.3969/j.issn.1000-386x.2020.11.050
|
[13] |
张章, 李超, 韩婷婷, 等. 基于忆阻器的感存算一体技术综述[J]. 电子与信息学报, 2021, 43(6): 1498–1509. doi: 10.11999/JEIT201102
ZHANG Zhang, LI Chao, HAN Tingting, et al. Review of the fused technology of sensing, storage and computing based on memristor[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1498–1509. doi: 10.11999/JEIT201102
|
[14] |
NI Li, WANG Penjun, ZHANG Yuejun, et al. An ACF<0.03 low-power software PUF based on the RISC-V processor for IoT security[J]. Microelectronics Journal, 2022, 121: 105362. doi: 10.1016/j.mejo.2022.105362
|
[15] |
XI Xiaodan, ZHUANG Haoyu, SUN Nan, et al. Strong subthreshold current array PUF with 265 challenge-response pairs resilient to machine learning attacks in 130nm CMOS[C]. 2017 Symposium on VLSI Circuits, Kyoto, Japan, 2017: C268–C269.
|
[16] |
ALVAREZ A, ZHAO Wenfeng, and ALIOTO M. 15fJ/b static physically unclonable functions for secure chip identification with <2% native bit instability and 140× Inter/Intra PUF hamming distance separation in 65nm[C]. 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, San Francisco, USA, 2015: 1–3.
|
[17] |
MAHMOODI M R, NILI H, FAHIMI Z, et al. Ultra-low power physical unclonable function with nonlinear fixed-resistance crossbar circuits[C]. 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019: 30.1. 1–30.1. 4.
|
[18] |
MAHMOODI M R, NILI H, and STRUKOV D B. RX-PUF: Low power, dense, reliable, and resilient physically unclonable functions based on analog passive RRAM crossbar arrays[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 99–100.
|
[19] |
YANG Kaiyuan, DONG Qing, BLAAUW D, et al. A 553F2 2-transistor amplifier-based physically unclonable function (PUF) with 1.67% native instability[C]. 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2017: 146–147.
|
[20] |
LU Lu, YOO T, and KIM T T H. A 6T SRAM based two-dimensional configurable challenge-response PUF for portable devices[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(6): 2542–2552. doi: 10.1109/TCSI.2022.3156983
|
[21] |
VATALARO M, DE ROSE R, LANUZZA M, et al. Static CMOS physically unclonable function based on 4T voltage divider with 0.6%–1.5% bit instability at 0.4–1.8V operation in 180 nm[J]. IEEE Journal of Solid-State Circuits, 2022, 57(8): 2509–2520. doi: 10.1109/JSSC.2022.3151229
|