Walter G G. A sampling theorem for wavelet subspaces, IEEE Trans. on IT, 1992, IT-38(2): 881-884.[2]Aldroubi A, Unser M. Families of wavelet transforms in connection with Shannon's sampling theorem and the Gabor transform. Wavelets: A Tutorial in Theory and Applications,C.K.Chui, Ed. New York: Academic, 1992, 509-528.[3]Janssen A J E M. The Zak transform and sampling theorems for wavelet subspaces[J].IEEE Trans. Signal Processing.1993, 41(12):3360-3524[4]Xia X G, Zhang Z. On sampling theorem, wavelets, and wavelet transforms[J].IEEE Trans. Signal Processing.1993, 41(12):3524-3535[5]Djokovic I, Vaidyanathan P P. New sampling theorems for MAR subspaces. Proc. ICASSP 1995, 1085-1088.[6]Sweldens W, Piessens R. Wavelet sampling techniques. Proceeding of Joint Statistical Meetings, San Francisco: August 1993, 20-29.[7]Shena M J. The discrete Wavelet transform: Wedding the Atrous and Mallat algorithm. IEEE Trans. on SP. 1992, SP-40(10): 2464-2482.[8]Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 1996, 3(2): 186-200.[9]Lawton W M. Necessary and sufficient conditions for constructing orthonormal waveletw bases. J. Math. Physics. 1991, 32(1): 57-61.[10]Steffen P, Heller P, Gopinath R A, Burrus C S. Theory of regular M-band wavelet bases IEEE Trans. on SP. 1993, SP-41(12): 3497-3510.[11]Sweldens W, Piessens R. Asymptotic error expansions for wavelet approximations of smooth functions II. Numer. Math. 1994, 68(3): 377-401.[12]Unser M. Approximation power of biorthogonal wavelet expansions. IEEE Trans. on SP, 1996, SP-44(3): 519-527.[13]张建康,保铮,于宏毅.M带离散小波变换中正交小波的逼近性能分析.中国科学(E辑).1997, 27(6): 556-
|