Advanced Search
Volume 27 Issue 7
Jul.  2005
Turn off MathJax
Article Contents
JIA Yunjian, HUANG Yu, LIANG Liang, WAN Yangliang, ZHOU Jihua. Research on Hierarchical Federated Learning Incentive Mechanism Based on Master-Slave Game[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1366-1373. doi: 10.11999/JEIT220175
Citation: Xu Dong, Xu Wen-li . Tracking Moving Object with Structure Template[J]. Journal of Electronics & Information Technology, 2005, 27(7): 1021-1024.

Tracking Moving Object with Structure Template

  • Received Date: 2004-02-20
  • Rev Recd Date: 2004-06-15
  • Publish Date: 2005-07-19
  • A two-step approach for tracking moving object is proposed in this paper. According of this approach, the structure template of object is firstly extracted with morphologic methods, and then the object tracking is performed with the structure template. The structure template is composed with the stable edges and the cross-points, which can describe the essential structure information of objects. The tracking processing can be divided into two steps: in the first step, the structure template is wholly moved very closed to the tracked object, and in the second step, the structure template is modified to converge to the cross-points and the edges in object image. Because of considering the structure information of object, the robusticity of tracking can be improved greatly.
  • Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models.Proc. First International Conference on Computer Vision, London,English, 1987:259 - 268.[2]Terzopoulos D, Szeliski R. Tracking with Kalman Snakes in active vision. Cambridge, MA, USA: MIT Press, 1992:3 - 20.[3]Peterfreund N. Robust tracking with Spatio-snakes: Kalman filtering approach. Proc. the 1998 IEEE 6th International Conference on Computer Vision, Bombay, India, 1998:433 - 439.[4]Peterfreund N. The velocity snake: Deformable contour for tracking in spatio-velocity space[J].Computer Vision and Image Understanding.1999, 73(3):346-[5]Yue F, Erdem A T. Tracking visible boundary of objects using occlusionadaptive motion snake[J].IEEE Trans. on Image Processing.2000, 9(12):2051-[6]Yu Z, Jain A K, Dubuisson M P. Object tracking using deformable templates[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2000, 22(5):544-[7]Bleau A, Leon L J. Watershed-based segmentation and region merging[J].Computer Vision and Image Understanding.2002, 77(3):317-
  • Cited by

    Periodical cited type(15)

    1. 纪勋,冷娜,郭慧. 水下图像增强与复原技术进展与展望. 计算机辅助设计与图形学学报. 2024(06): 805-830 .
    2. 陈炜玲,邱艳玲,赵铁松,魏宏安,程恩. 面向海洋的水下图像处理与视觉技术进展. 信号处理. 2023(10): 1748-1763 .
    3. 王聪,李恒,薛晓军,张国银,王海瑞,赵磊. 基于OTSU分割和融合的非均匀光照水下图像增强. 光电子·激光. 2022(01): 30-36 .
    4. 段锦. 基于Retinex的园林景观图像增强. 微型电脑应用. 2022(11): 45-47+52 .
    5. 郭银景,吴琪,苑娇娇,侯佳辰,吕文红. 水下光学图像处理研究进展. 电子与信息学报. 2021(02): 426-435 . 本站查看
    6. 王聪,薛晓军,李恒,张国银,王海瑞,赵磊. 基于颜色校正和改进二维伽马函数的水下图像增强. 电子测量与仪器学报. 2021(02): 171-178 .
    7. 张毅,姚红媛. 不同光照强度下园林景观设计图像优化研究. 激光杂志. 2021(09): 144-149 .
    8. 杨福豪,史启超,蓝方鸣,彭宗举. 基于色彩衰减补偿和Retinex的水下图像增强. 宁波大学学报(理工版). 2020(01): 58-64 .
    9. 孟娴. 基于暗原色先验的伪彩色图像均衡化增强系统设计. 现代电子技术. 2020(07): 74-77 .
    10. 张蕾,耿俊,王思秀,徐春. 基于特征库识别的集成网络异常流量提纯仿真. 计算机仿真. 2020(07): 363-367 .
    11. 周丽丽,朱佳琦,王桥桥,蒋玉红. 基于雾线暗通道先验的水下图像复原方法. 南京邮电大学学报(自然科学版). 2020(04): 64-69 .
    12. 李景明,侯国家,潘振宽,刘玉海,赵馨,王国栋. 基于拉普拉斯算子先验项的水下图像复原. 激光与光电子学进展. 2020(16): 265-273 .
    13. 黄辉先,陈凡浩. 基于注意力机制和Retinex的低照度图像增强方法. 激光与光电子学进展. 2020(20): 53-60 .
    14. 谢抢来,杨威,卢志群. 基于偏振成像的水下退化图像复原算法. 计算机仿真. 2020(12): 249-252+257 .
    15. 陈龙彪,谌雨章,王晓晨,邹鹏,胡学敏. 基于深度学习的水下图像超分辨率重建方法. 计算机应用. 2019(09): 2738-2743 .

    Other cited types(16)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2119) PDF downloads(666) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return