Yang Shaoguo, Yin Zhongke, Luo Bingwei. FRACTAL IMAGE COMPRESSION WITH FRACTAL INTERPOLATION AND FRACTAL IMAGE CODING[J]. Journal of Electronics & Information Technology, 1998, 20(5): 699-702.
Citation:
Yang Shaoguo, Yin Zhongke, Luo Bingwei. FRACTAL IMAGE COMPRESSION WITH FRACTAL INTERPOLATION AND FRACTAL IMAGE CODING[J]. Journal of Electronics & Information Technology, 1998, 20(5): 699-702.
Yang Shaoguo, Yin Zhongke, Luo Bingwei. FRACTAL IMAGE COMPRESSION WITH FRACTAL INTERPOLATION AND FRACTAL IMAGE CODING[J]. Journal of Electronics & Information Technology, 1998, 20(5): 699-702.
Citation:
Yang Shaoguo, Yin Zhongke, Luo Bingwei. FRACTAL IMAGE COMPRESSION WITH FRACTAL INTERPOLATION AND FRACTAL IMAGE CODING[J]. Journal of Electronics & Information Technology, 1998, 20(5): 699-702.
In this paper, fractal image coding and fractal interpolation for image compression are studied at first. Because the reconstructed image quality using the two methods at high compression is not good, a new image compression idea combining these two methods is proposed. The coding results verified the new idea. The compression ratio is as high as 76 to 1 as PSNR being 28.5 dB and coding time is very short.
Mandelbrot B B. The Ractal Geometry of Nature. San Francisco: Freeman, 1982, 1-80.[2]Barnsley M F, Sloan A D. A better way to compress images. Byte, 1988, 13: 215-223.[3]Jacquin A E. Fractal image coding based on a theory of iterated contractive image transforma-[4]tions. SPIE, Vo1.1360, Visual Communications and Image Processing, 1990, 227-239.[5]房育栋,余英林.快速分形图象压缩编码.电子学报,1996, 24(1): 28-33.[6]杨绍国,尹忠科,罗炳伟,尧德中.分形插值在图象处理中的应用.电子科学学刊,1997,19(4): 562-565.