Zhang Mengyang, Lu Baowei, Song Wenmiao. RELATIVISTIC EFFECTS ON POINT-POSITIONING PRECISION IN THE GPS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 663-668.
Citation:
Zhang Mengyang, Lu Baowei, Song Wenmiao. RELATIVISTIC EFFECTS ON POINT-POSITIONING PRECISION IN THE GPS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 663-668.
Zhang Mengyang, Lu Baowei, Song Wenmiao. RELATIVISTIC EFFECTS ON POINT-POSITIONING PRECISION IN THE GPS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 663-668.
Citation:
Zhang Mengyang, Lu Baowei, Song Wenmiao. RELATIVISTIC EFFECTS ON POINT-POSITIONING PRECISION IN THE GPS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 663-668.
The relativistic effects on point-positioning precision in the GPS are studied with reference to an earth centered inertial coordinate system. First, the metric coefficient 900 in the earth centered inertial system is obtained from the sun s Schwarzschild isotropic metric, with the gravitation of the earth and the moon taken into account. Then the general and special relativistic effects on the GPS atomic frequency standards, the GPS satellites orbits and the propagation of the GPS navigation signals are estimated, based on which the point-positioning errors caused by the gravitation of the earth, the moon and the sun are evaluated, and the sources and importance of each components of the errors are analysed.
周忠谟,易杰军.GPS卫星测量原理与应用.北京:测绘出版社,1992年,第六章.[2]Manasse F K, Misner C W. Fermi normal coordinates and some basic concepts in differential geometry[J].Journal of Mathematical Physics.1963, 4(6):735-745[3]Misner C W, Thorne K S, Wheeler J A. Gravitation. San Fransisco: W. H. Freeman and Company, 1973, Part 111, Chapter 14.[4]Weinberg S. Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity. New York: John Wiley, 1972, Chapter 8.[5]章仁为.静止卫星的轨道和姿态控制.北京:科学出版社,1987年,第二章.