Advanced Search
Volume 23 Issue 5
May  2001
Turn off MathJax
Article Contents
Zou Hongxing, Dai Qionghai, Zhou Xiaobo, Li Yanda. DOPPLERLET TRANSFORM AND ANALYSIS OF ITS MATCHING CONVERGENCE[J]. Journal of Electronics & Information Technology, 2001, 23(5): 417-424.
Citation: Zou Hongxing, Dai Qionghai, Zhou Xiaobo, Li Yanda. DOPPLERLET TRANSFORM AND ANALYSIS OF ITS MATCHING CONVERGENCE[J]. Journal of Electronics & Information Technology, 2001, 23(5): 417-424.

DOPPLERLET TRANSFORM AND ANALYSIS OF ITS MATCHING CONVERGENCE

  • Received Date: 1999-08-27
  • Rev Recd Date: 1999-12-15
  • Publish Date: 2001-05-19
  • A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and moduiated windowed Doppler signals as its basis functions, is introduced. It is proved that the matchihg pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can char-acterize compactly a nonstationary signal.
  • loading
  • S.E.Qian,D.P.Chen,Signal representation via adaptive normalized Gaussian functions,IEEE Trans.on Signal Processing,1988,SP-36(1)-11.[2]S.G.Mallat,Z.F.Zhang,Matching pursuits with time-frequency dictionaries,IEEE Trans.on Signal Processing,1993,SP-41(12),3397-3415.[3]S.Mann,S.Haykin,The chirplet transform:Physical considerations,IEEE Trans.on SignalProcessing,1995,SP-43(11):2745-2761.[4]D.Mihovilovic,R.N Bracewell,Whistler analysis in the time-frequency plane using chirplets,J.Geophys.Res.,1992,97(A11),17199-17204.[5]邹红星,周小波,李衍达,采用Dopplerlet基函数的时频信号表示,清华大学学报(自然科学版),2000,40[3),55-58.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2064) PDF downloads(439) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return