Advanced Search
Volume 21 Issue 6
Nov.  1999
Turn off MathJax
Article Contents
Lin Jiayu, Huang Zhiping, Wang Yueke, Shen Zhenkang. SELECTION OF PROPER EMBEDDING DIMENSION IN PHASE SPACE RECONSTRUCTION OF SPEECH SIGNALS[J]. Journal of Electronics & Information Technology, 1999, 21(6): 735-742.
Citation: Lin Jiayu, Huang Zhiping, Wang Yueke, Shen Zhenkang. SELECTION OF PROPER EMBEDDING DIMENSION IN PHASE SPACE RECONSTRUCTION OF SPEECH SIGNALS[J]. Journal of Electronics & Information Technology, 1999, 21(6): 735-742.

SELECTION OF PROPER EMBEDDING DIMENSION IN PHASE SPACE RECONSTRUCTION OF SPEECH SIGNALS

  • Received Date: 1998-03-24
  • Rev Recd Date: 1999-01-04
  • Publish Date: 1999-11-19
  • In phase space reconstruction of time sequences,the selection of embedding dimension is important.Based on the idea of looking at the behavior of enar neighbors under changes in the reconstruction is constructed.This method has asound theoretical basis and can get good result.By the way,it can indicatethe noise level in the data to be reconstructed,and estimate the effect of reconstruction.It is applied to speech signal reconstruction.
  • loading
  • Parker T S, Chua L D. Chaos: a tutorial for engineers[J].Proc. IEEE.1987, 75 (8):982-1608[2]Takens F. Detecting Strange Attractor in Turbulence. in Dynamical Systems and Turbulence, Warwich, 1980, Lecture Notes in Mathematics, Vol. 898, Rand and Young eds, 1981: 366-381.[3]Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space[4]reconstruction using geometrical construction. P场Rev A, 1992, 45(6): 3403-3411.[5]Buzug T, Pfister G. Comparison of algorithms calculating optimal embedding parameters for delay time coordinates[J].Physica D.1992, 58(1-4):127-137[6]Aleksic Z. Estimating the embedding dimension[J].Physica D.1991, 52(2-3):362-368[7]Broomhead D S, King G P. Extracting qualitative dynamics from experimental data[J].Physica D.1986, 20(2-3):217-236[8]Vatutard R, Yiou P, Ghil M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals.[9]Physica D, 1992, 58(1-4): 95-126.[10]Mees A I, Rapp P E. Singular-value decomposition and embedding dimension. Phys Rev A, 1987,[11](l): 340-346.[12]Fraser A M. Information and entropy in strange attractors. IEEE Trans. on IT, 1989, IT-35(2):[13]5-262.[14]Hong Pi, Peterson C. Finding the embedding dimension and variable dependencies in time series[J].Neural Comput.1994, 6(3):509-518[15]Thompson C, Mulpur A, Mehta V. Transition to chaos in acoustically driven flow[J].J Acoust Soc Am.1991, 90(4):2097-2103[16]Maragos P. Fractal aspects of speech signals: Dimension and interpolation. Proc of ICASSP, Ontario, Canada: 1991: 417-420.[17]龚云帆, 徐健学. 混沌信号和噪声.信号处理, 1997, 13(2): 112-118.[18]Palus M, Dvorak I. Singular-value decomposition in attractor reconstruction: pitfalls and precau-[19]tions. Physica D, 1992, 55(1-2): 221-234.[20]韦岗, 陆以勤, 欧阳景正. 混沌、分形理沦与语音信号处理.电子学报, 1996, 24(1): 34-39.[21]Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series-The[22]role of the time window length. Physica D, 1996, 95(1): 13-28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2231) PDF downloads(449) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return