Advanced Search
Volume 25 Issue 8
Aug.  2003
Turn off MathJax
Article Contents
Xu Feng, Hong Wei, Zhou Houxing . The domain decomposition FDTD algorithm (DD-FDTD) for three-dimensional complex problems[J]. Journal of Electronics & Information Technology, 2003, 25(8): 1114-1119.
Citation: Xu Feng, Hong Wei, Zhou Houxing . The domain decomposition FDTD algorithm (DD-FDTD) for three-dimensional complex problems[J]. Journal of Electronics & Information Technology, 2003, 25(8): 1114-1119.

The domain decomposition FDTD algorithm (DD-FDTD) for three-dimensional complex problems

  • Received Date: 2002-03-15
  • Rev Recd Date: 2002-09-23
  • Publish Date: 2003-08-19
  • The Domain Decomposition FDTD (DD-FDTD) method is presented for solving complex 3-D problems and improving the accuracy of solutions. According to the features of the problem, the original domain is decomposed into several sub-domains. In each sub-domain, the conforrnal meshes are created in local coordinates and the FDTD computation is carried out independently in local meshes. In the iteration procedure of FDTD, the data are exchanged between adjacent sub-domains with overlapped meshes. An interpolating and error-modifying scheme proposed here integrates the sub-domains and leads to a more exact solution. A complex 3-D aperture antenna problem is calculated by using this method and the accuracy of the solution validates the usefulness and exactness of this method.
  • loading
  • K.S. Yee, Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media, IEEE Trans. on Antennas Propagat., 1966, AP-14(5), 302-307.[2]R. Holland, Finite-difference solutions of Maxwells equations in generalized nonorthogonal coordinates, IEEE Trans. on Nucl. Sci., 1983, NS-30(6), 4589-4591.[3]J.F. Lee, R. Palandech, R. Mittra, Modeling three-dimensional discontinuities in waveguides using nonorthogonal FDTD algorithm, IEEE Trans. on Microwave Theory Tech., 1992, MTT-40(2), 346-352.[4]T.G. Jurgens, A. Talflove, K. Umashanker, T. G. Moore, Finite-difference time-domain modeling of curved surfaces, IEEE Trans. on Antennas Propagat., 1992, AP-40(4), 357-366.[5]J. Fang, J. Ren, A locally conformed finite-difference time-domain algorithm of modeling arbitrary shape planar metal strips, IEEE Trans. on Microwave Theory Tech., 1993, MTT-41(5), 830-838.[6]S.S. Zivanovic, K. S. Yee, K. K. Mei, A subgridding method for the time-domain finite-difference method to solve Maxwells equations, IEEE Trans. on Microwave Theory and Tech., 1991, MTT-39(3), 471-479.[7]K.S. Yee, J. S. Chen, A. H. Chang, Conformal Finite-Difference Time-Domain (FDTD) with overlapping grid, IEEE Trans. on Antennas Propagat., 1992, AP-40(9), 1068-1075.[8]R.B. Wu, T. Itoh, Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements, IEEE Trans. on Antennas Propagat., 1997, AP-45(8), 1302-1309.[9]D. Koh, H. Lee, T. Itoh, A hybrid full-wave analysis of via-hole grounds using finite-difference and finite-element time-domain methods, IEEE Trans. on Microwave Theory and Tech., 1997,MTT-45(12), 2217-2222.[10]许锋,洪伟,童创明,区域分解时域有限差分方法(DD-FDTD)及其在散射问题中的应用,电子学报,2001,29(12),1642-1645.[11]K. K. Mei, J. Fang, Superabsorption - A nethod to improve absorbing boundary conditions,IEEE Trans. on Antennas Propagat., 1992, AP-40(9), 1001-1010.[12]Xiaolei Zhang, K. K. Mei, Time-Domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities, IEEE Trans. on Microwave Theory and Tech., 1988, MTT-36(12), 1775-1787.[13]P. Mezzanotte, L. Roselli, R. Sorrentino, A simple way to model curved metal boundaries in FDTD algorithm avoiding staircase approximation, IEEE Microwave and Guided Wave Letters,1995, 5(8), 267-269.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2698) PDF downloads(536) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return