Advanced Search
Volume 25 Issue 8
Aug.  2003
Turn off MathJax
Article Contents
Deng Xiangjin, Wang Yanping, Peng Hailiang. The clustering of high resolution remote sensing imagery[J]. Journal of Electronics & Information Technology, 2003, 25(8): 1073-1080.
Citation: Deng Xiangjin, Wang Yanping, Peng Hailiang. The clustering of high resolution remote sensing imagery[J]. Journal of Electronics & Information Technology, 2003, 25(8): 1073-1080.

The clustering of high resolution remote sensing imagery

  • Received Date: 2002-01-24
  • Rev Recd Date: 2002-06-17
  • Publish Date: 2003-08-19
  • The technology of clustering high resolution imagery is difficult, due to the fact that the minor components, such as roads, make the appearance of the same category region non-uniform. This paper proposes a new approach to cluster high resolution remote sensing imagery. The clustering approach includes three steps. First, eliminate the minor components in moving windows. The process uses 1-D morphological watershed technique to find the left threshold and the right threshold in the histogram. The gray levels beyond the two thresholds which result from minor components will replaced by the principle gray level. This process can improve the statistic measures when the moving windows contain some small hetero-objects. Second, compute the image characteristics in moving windows. Third, apply BPC neural network, which is combined by a back-propagation network and a competitive network, to cluster images according to the images characteristics. Three approaches are tested using SPOT images for clustering residential areas and agricultural areas in the suburb of Beijing. The experimental results show that the new clustering approach has the highest clustering accuracy.
  • loading
  • 骆剑承.周成虎,杨艳,人工神经网络遥感影像分类模型及其与知识集成方法研究,遥感学报,2001,5(2),122-129.[2]A. Banerjee, P. Burlina, F. Alajaji, Image segmentation and labeling using the Polya Urn model,IEEE Trans. on Image Processing, 1999, 8(9), 1243-1253.[3]G. Kuntimad, H. S. Ranganath, Perfect image segmentation using pulse coupled neural networks,IEEE Trans. on Neural Networks, 1999, 10(3), 591-598.[4]Y.A. Tolias, S. M. Panas, Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions, IEEE Trans. on Syst., Man, and Cybernetics, part A: Syst. and Humans, 1998, 28(3), 359-369.[5]Y. Dong, A. K. Milne, B. C. Forster, Segmentation and classification of vegetated areas using polarimetric SAR image data, IEEE Trans. on Geoscience and Remote Sensing, 2001, 39(2),321-329.[6]S.R. Seethalakshmy, P. Srivastava, J. Majumdar, Multi-modal image segmentation using a modified Hopfield neural network, Pattern Recognition, 1998, 31(6), 743-750.[7]J.E. Koss, F. D. Newman, T. K. Johnson, D. L. Kirch, Abdominal organ segmentation using texture transforms and a Hopfield neural network, IEEE Trans. on Medical Imaging, 1999, 18(7),640-648.[8]T. Nelson, K. O. Niemann, M. Wulder, Spatial statistical techniques for aggregating point objects extracted from high spatial resolution imagery, IEEE IGARSS(International Geoscience and Remote Sensing Symposium), 2001, (from the CD-ROM of 2001 IEEE IGARSS).Q. Zhang, J. Wang, P. Gong, P. Shi, Texture analysis for urban spatial pattern study usingSPOT imagery, IEEE IGARSS(International Geoscience And Remote Sensing Symposium), 2001. (from the CD-ROM of 2001 IEEE IGARSS)[9]J. A. Bendiktsson, M. Pesaresi, Feature extracted and classification of urban high-resolution satellite imagery based on morphological preprocessing, IEEE IGARSS(International Geoscience And Remote Sensing Symposium), 2001, (from the CD-ROM of 2001 IEEE IGARSS).[10]P. Soille, Morphological Image Analysis: Principles and Applications, New York, Springer-Verlag,1999, 1-158.[11]Cris L. Luengo Hendriks, Marjolein van der Glas, Lucas J. van Vliet, Image Analysis, CSP:Computer Service Labs, Delft University, Holland, November 6, 2001, 28-30.[12]Chris Oliver, Shaun Quegan, Understanding Synthetic Aperture Radar Images, Boston/London,Artech House, Inc., 1998, 195-295.[13]M.B. Charles, F. D. Timothy, D. Kevin, Automatic land-cover classification of a Barrier Island in the Virginia coast, IEEE IGARSS(International Geoscience And Remote Sensing Symposium),2001, (from the CD-ROM of 2001 IEEE IGARSS).[14]边肇祺,等编著,模式识别,北京,清华大学出版社,1988,216-284[15]姚天任,孙洪著,现代数字信号处理,武汉,华中科技大学出版社,1999,183-201.[16]邹谋炎,反卷积和信号复原,北京,国防工业出版社,1999,12-63.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2616) PDF downloads(497) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return