Deng Zi-li, Gao Yuan, Li Yun, Wang Xin . Multisensor Information Fusion Steady-State Optimal Wiener Deconvolution Filter[J]. Journal of Electronics & Information Technology, 2005, 27(4): 670-672.
Citation:
Deng Zi-li, Gao Yuan, Li Yun, Wang Xin . Multisensor Information Fusion Steady-State Optimal Wiener Deconvolution Filter[J]. Journal of Electronics & Information Technology, 2005, 27(4): 670-672.
Deng Zi-li, Gao Yuan, Li Yun, Wang Xin . Multisensor Information Fusion Steady-State Optimal Wiener Deconvolution Filter[J]. Journal of Electronics & Information Technology, 2005, 27(4): 670-672.
Citation:
Deng Zi-li, Gao Yuan, Li Yun, Wang Xin . Multisensor Information Fusion Steady-State Optimal Wiener Deconvolution Filter[J]. Journal of Electronics & Information Technology, 2005, 27(4): 670-672.
By the modern time series analysis method, based on the AutoRegressive Moving Average(ARMA) innovation model and Lyapunov equation, a mulisensor information fusion Wiener deconvolution filter is presented for single channel ARMA signals. It avoids the Riccati equation and can be applied to design the self-tuning information fusion filter for systems with unknown model parameters and unknown variances. A simulation example shows its effectiveness.
何友,王国宏,陆大,彭应宁.多传感器信息融合及其应用.北京:电子工业出版社,2000- 1-11.[2]Mendel J M. Lessons in Estimation Theory for Signal Processing,Communications and Control. Englewood Cliffs, New Jersey:Prentice Hall, 1995: 1 - 400.[3]邓自立,高媛,马建为.两传感器信息融合最优白噪声反卷积Wiener滤波器.科学技术与工程,2003,3(3):216-218.[4]邓自立.卡尔曼滤波与维纳滤波--现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社,2001:279-390.[5]邓自立.自校正滤波理论及其应用--现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社,2003:1-375.[6]邓自立,马建为,高媛.两传感器自校正信息融合白噪声Wiener反卷积滤波器.科学技术与工程,2003,3(4):325-327.