Advanced Search
Volume 24 Issue 5
May  2002
Turn off MathJax
Article Contents
Zheng Jianguo, Liu Fang, Jiao Licheng . Study of fast learning algorithm for neural networks base on CGM-OC approach[J]. Journal of Electronics & Information Technology, 2002, 24(5): 667-670.
Citation: Zheng Jianguo, Liu Fang, Jiao Licheng . Study of fast learning algorithm for neural networks base on CGM-OC approach[J]. Journal of Electronics & Information Technology, 2002, 24(5): 667-670.

Study of fast learning algorithm for neural networks base on CGM-OC approach

  • Received Date: 2000-11-03
  • Rev Recd Date: 2001-07-04
  • Publish Date: 2002-05-19
  • Because the feedforward neural network has an ability of approach to arbitrary nonlinear mapping, it can be used effectively in the modeling and controlling of nonlinear system. In order to improve the learning efficiency and stability of feedforward neural network, a fast learning algorithm for neural networks base on CGM-OC approach is presented. Compared with other learning methods such as BP method, Broyden Flecher Goldfarl Shanno method. Power method etc., simulation results show that the proposed method is an efficient and fast method.
  • loading
  • 徐嗣鑫,戴友元,前向神经网络的一种快速学习算法及其应用,控制与决策,1993,8(4),284-288[2]王耀南,童调生,蔡自兴,基于神经元网络的智能PID控制及应用,信息与控制,1994,23(3),185-189[3]张星昌,前馈神经网络的新学习算法研究及其应用,控制与决策,1997,12(3),213-216[4]王耀南,基于变尺度优化方法的快速神经网络学习算法研究,系统仿真学报,1997,9(1),34-39.[5]徐春晖,徐向东,前馈神经网络新学习算法的研究,清华大学学报(自然科学版)1999,39(3),1-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2449) PDF downloads(442) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return