Advanced Search
Volume 24 Issue 11
Nov.  2002
Turn off MathJax
Article Contents
Wang Junfeng, Song Guoxiang. A new adaptive equalization algorithm based on orthogonal multiwavelets[J]. Journal of Electronics & Information Technology, 2002, 24(11): 1525-1529.
Citation: Wang Junfeng, Song Guoxiang. A new adaptive equalization algorithm based on orthogonal multiwavelets[J]. Journal of Electronics & Information Technology, 2002, 24(11): 1525-1529.

A new adaptive equalization algorithm based on orthogonal multiwavelets

  • Received Date: 2001-04-13
  • Rev Recd Date: 2001-10-18
  • Publish Date: 2002-11-19
  • A new equalizer represented by a set of orthogonal multiwavelets is presented. Since multiwavelets can be orthogonal, compactly supported and linear phase, the multiwavelets transformed correlation matrices have less non-zero elements and smaller boundary effects than that of wavelet. So, a new multiwavelet transform domain newton-LMS adaptive equalization algorithm is described, and its complexity is O(N log N) by using the preconditioned conjugate gradient algorithm. Simulation shows its convergence speed is faster and its realization is easier.
  • loading
  • N. Erdol, F. Basbug, Wavelet transform based adaptive filters: Analysis and new results, IEEE Trans. on SP., 1996, SP-44(9), 2163-2171.[2]S. Hosur, A. H. Tewfik, Wavelet transform domain adaptive filtering, IEEE Trans. on SP., 1997,SP-45(3), 617-630.[3]刘丰,程俊,王新梅,基于规范正交小波的自适应均衡器,电子科学学刊,1997,19(5),637-642.[4]I. Daubechies, Ten Lectures on Wavelets, Philadephia, SIAM, 1992.[5]Q. Jiang, Orthogonal multiwavelets with optimum time-frequency, IEEE Trans. on SP., 1998,SP-46(4), 830-844.[6]J. Lebrun, M. Vrtterli, Balanced multiwavelets theory and design, IEEE Trans. on SP., 1998,SP-46(4), 1119-1125.[7]B.K. Alpert, A class of bases in L2 for the sparse representation of integral operators, SIAM J.Math. Anal., 1993, 24(1), 246-262.[8]V. Strela, P. Heller, G. Strang, P. Topiwala, C. Heil, The application of multiwavelet filter banks to signal and image processing, IEEE Trans. on Image Proc., 1999, IP-8(4), 548-563.[9]徐树方,矩阵计算的理论与方法,北京,北京大学出版社,1995,162-168.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2067) PDF downloads(913) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return