Li Wenchen. A FINITE ELEMENT METHOD USING RING UNIT WITH RECTANGULAR CROSS-SECTION TO NUMERICALLY ANALYZE THE AXIALLY SYMMETRIC ELECTROMAGNETIC FIELD[J]. Journal of Electronics & Information Technology, 1986, 8(5): 349-358.
Citation:
Li Wenchen. A FINITE ELEMENT METHOD USING RING UNIT WITH RECTANGULAR CROSS-SECTION TO NUMERICALLY ANALYZE THE AXIALLY SYMMETRIC ELECTROMAGNETIC FIELD[J]. Journal of Electronics & Information Technology, 1986, 8(5): 349-358.
Li Wenchen. A FINITE ELEMENT METHOD USING RING UNIT WITH RECTANGULAR CROSS-SECTION TO NUMERICALLY ANALYZE THE AXIALLY SYMMETRIC ELECTROMAGNETIC FIELD[J]. Journal of Electronics & Information Technology, 1986, 8(5): 349-358.
Citation:
Li Wenchen. A FINITE ELEMENT METHOD USING RING UNIT WITH RECTANGULAR CROSS-SECTION TO NUMERICALLY ANALYZE THE AXIALLY SYMMETRIC ELECTROMAGNETIC FIELD[J]. Journal of Electronics & Information Technology, 1986, 8(5): 349-358.
In the numerical analysis of axially symmetry electromagnetic field, the finite element method using ring unit with rectangular cross -section has more advantages than other methods. The ring unit characteristic equations in relation to Laplace s, Poissou s and Helmholtz s equa.tions are derived. Using this method, the field structure of cylindrical capacitor and the capacitance and quality factor of the end of laded eoaxial cavity are successfully analyzed.
J. Brian, F. Anibal and G. Y. Philippou, IEEE Trans. on MTT, MTT-30 (1982), 1976.[2]曾余庚,徐国华,宋国乡编著,电磁场有限单元法,科学出版社,1982年,第八章,第五章,第六章.[3]冯慈章主编,电磁场,人民教育出版社,1979年,第一章.[4]盛剑霓等编著,电磁场数值分析,科学出版社,1984年,第二章.[5]R. F. Harrington著,孟侃译,正弦电磁场,上海科学技术出版社,1964年,第二章.