Advanced Search
Volume 26 Issue 6
Jun.  2004
Turn off MathJax
Article Contents
SUN Shun, DONG Kai, QI Lin, LIU Jun. Multiple Moving Observers Registration Algorithm Based on TDOA and GROA[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1439-1445. doi: 10.11999/JEIT160562
Citation: Zhang Xian-chao, XU Yun, Chen Guo-liang. Practical Implementation of the Arithmetic Fourier Transform[J]. Journal of Electronics & Information Technology, 2004, 26(6): 935-939.

Practical Implementation of the Arithmetic Fourier Transform

  • Received Date: 2003-01-07
  • Rev Recd Date: 2003-05-27
  • Publish Date: 2004-06-19
  • The Arithmetic Fourier Transform (AFT) is widely used because of its simple computational structure and little multiplications. But over-sampling is often needed for the implementation of AFT to meet the accuracy requirements in real applications and this is one of the main drawbacks of AFT and limits its application. In this paper, with the fact that linear interpolation implementation can gain very high accuracy, a new implementation is presented based on linear interpolation and over-sampling. This implementation can get accuracy close to that by over-sampling, thus the over-sampling problem of AFT is overcome.
  • Bruns H.Grundlinien des Wissenschaftlichnen Rechnens[M].Leipzig,Personal Publication,1903.[2]Tufts D W,Sadasiv G.The arithmetic Fourier transform[J].IEEE ASSP Mag,1988,5(1):13-17.[3]Reed I S,Tufts D W,Xiao Yu,et al..Fourier analysis and signal processing by use of Mobius inversion formular[J].IEEE Trans.on Acoust,Speech,Signal Processing.1990,38(3):458-470[4]Reed I S,Shih M T,Troung T K,et al..A VLSI architecture for simplified arithmetic Fourier transform algorithms[J].IEEE Trans.on Acoust,Speech,Signal Processing,1993,40(5):1122-1132.[5]Lovine F P,Tantaratanas S.Some alternate realizations of the arithmetic Fourier transform.[C].Proceedings of the Twenty-Seventh Annual Asilomar Conference on Signals,Systems,and Computers,Pacific Grove,California,1993:310-314.[6]Ge Xi-Jin,Chen Nan-Xian,Chen Zhao-Dou.Efficient algorithm for 2-D arithmetic Fourier transform[J].IEEE Trans.on Signal Processing.1997,45(8):2136-2140[7]张宪超,武继刚,蒋增荣,陈国良.离散傅里叶变换的算术傅里叶变换算法[J].电子学报,2000,28(5):105-107.[8]张宪超,李宁,陈国良.离散余弦变换的改进的箅术傅里叶变换算法[J].电子学报,2000,28(9):88-90.[9]张宪超,陈国良,李宁.改进的算术傅里叶变换算法[J].电子学报,2001,29(3):329-331.[10]Wigley N Jullien.A sampling reduction for the arithmetic Fourier transform[C].Proc,32nd Midwest Symposium on Circuits and Systems,Champaign,IL,1990:841-844.[11]Knckaert L.A generalized Mobius transform,arithmetic Fourier transform,and primitive roots[J].IEEE Trans.on Signal Processing.1996,44(5):1307-1310[12]Schiff J,Walker W.The arithmetic Fourier transform.Analysis,geometry and groups:A Riemann legacy volume,Hadronic Press Collect.Orig.Artic.,Palm Harbor,FL,Hadronic Press,1993:613-625.[13]Walker W.The arithmetic Fourier transform and real neural networks:summability by primes[J].J.Math.Anal.Appl.1995,190:211-219.[14]Walker W.A summability method for the arithmetic Fourier transform[J].BIT.1994,34(2):304-309[15]Tufts D W,Chen H.Iterative realization of the arithmetic Fouier transform[J].IEEE Trans.Signal Processing.1993,41(1):152-161
  • Cited by

    Periodical cited type(6)

    1. 陈宇航,饶云华,潘宇盈,万显荣,吴敏渊. 分时多频外辐射源雷达发射站定位方法. 雷达科学与技术. 2022(03): 335-341+354 .
    2. 王宝仁,曹明瑞. 基于RLS自适应滤波算法的广义互相关时延估计方法研究. 组合机床与自动化加工技术. 2020(06): 27-31+36 .
    3. 任凯强,孙正波,王维超. 基于PSO的三星时差定位参考站最优布站技术. 计算机仿真. 2020(08): 26-29+260 .
    4. 任凯强,孙正波. 基于虚拟参考站的同步三星时差定位系统广域差分校正算法. 电子与信息学报. 2019(02): 433-439 . 本站查看
    5. 陈志猛,左燕,王文光. 误差校正下外辐射雷达无源定位算法. 现代雷达. 2019(03): 42-47 .
    6. 左燕,陈志猛,蔡立平. 基于约束总体最小二乘的单站DOA/TDOA联合误差校正与定位算法. 电子与信息学报. 2019(06): 1317-1323 . 本站查看

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2291) PDF downloads(660) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return