Advanced Search
Volume 27 Issue 9
Sep.  2005
Turn off MathJax
Article Contents
Lin Pan, Zheng ChongXun, Yang Yong, Yan XiangGuo, Gu JianWen. A Robust Method for Segmentation of Human Brain Tissue from Magnetic Resonance Images[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1420-1424.
Citation: Lin Pan, Zheng ChongXun, Yang Yong, Yan XiangGuo, Gu JianWen. A Robust Method for Segmentation of Human Brain Tissue from Magnetic Resonance Images[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1420-1424.

A Robust Method for Segmentation of Human Brain Tissue from Magnetic Resonance Images

  • Received Date: 2004-09-15
  • Rev Recd Date: 2005-03-09
  • Publish Date: 2005-09-19
  • Automatic segmentation of brain magnetic resonance images is a critical problem in many medical imaging applications. In this paper, a robust automated segmentation algorithm is presented for the brain magnetic resonance images. The segmentation framework is composed of three stages. First, it uses level set method to perform the brain stripping operation. In the second stage, it compensates for nonuniformity in the brain image based on computing estimates of tissue intensity variation. Finally, a maximum aposteriori classifier is used to partition the brain into gray matter, white matter, and cerebrospinal fluid. The proposed method has been tested using magnetic resonance dada. This algorithm may be applied to various research and clinical investigations in which brain segmentation and volume measurement involving Magnetic resonance images dada are needed.
  • loading
  • Wells W M, Kikinis R, Grimson W E L, et al.. Adaptive segmentation of MRI data[J].IEEE Trans on Medical Imaging.1996, 15(5):429-[2]Leemput K Van, Maes F, Vandermeulen D, et al.. Automated model based t 10 classification of MR images of the brain[J].IEEE Trans. on Medical Imaging.1999, 18( 10):897-[3]Cocosco C A, Zijden.bos A P, Evans A C. A fully automatic and robust brain MRI tissue classification method. Medical Image Analysis, 2003, 7(4): 513 - 527.[4]Shattuck D W, Sandor-Leahy S R, Schaper K A, et al.. Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 2001, 13(5): 856 - 876.[5]Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J].IEEE Trans. on Medical Imaging.2001, 20(1):45-[6]Osher S, Sethian J A. Fronts propagating with curvaturedependent speed[J].Journal of Computational Physics.1998, 79(1):12-[7]Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1984, 6(6):721-[8]Besag J. On the statistical analysis of dirty pictures. J. Roy. Statist.Soc, Ser. B, 1986, 48(3): 259 - 302.[9]Collins D L, Zijdenbos A P, Kollokian V, et al.. Design and construction of a realistic digital brain phantom[J].IEEE Trans. on Medical Imaging.1998,17(3):463-
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2501) PDF downloads(1087) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return