Tian Da, Chen Tian-qi. Parameter and 2-D AOA Estimation of LFM Sources with Spatio-Temporal Undersampling[J]. Journal of Electronics & Information Technology, 2004, 26(5): 709-714.
Citation:
Tian Da, Chen Tian-qi. Parameter and 2-D AOA Estimation of LFM Sources with Spatio-Temporal Undersampling[J]. Journal of Electronics & Information Technology, 2004, 26(5): 709-714.
Tian Da, Chen Tian-qi. Parameter and 2-D AOA Estimation of LFM Sources with Spatio-Temporal Undersampling[J]. Journal of Electronics & Information Technology, 2004, 26(5): 709-714.
Citation:
Tian Da, Chen Tian-qi. Parameter and 2-D AOA Estimation of LFM Sources with Spatio-Temporal Undersampling[J]. Journal of Electronics & Information Technology, 2004, 26(5): 709-714.
Time-Frequency parameter estimation and direction finding for nonstationary signals impinging on an antenna array over a wide frequency band (2~18GHz) is under in-vestigation, and a new method for parameter and 2-D Angle-Of-Arrival (AOA) estimation of spatio-temporal undersampled LFM sources is proposed in this paper. The proposed method uses time domain dechirp algorithm for chirp rates estimation. By filtering in the fractional Fourier domain, signals are extracted from the mixture of sources and noise. Un-ambiguous initial frequency estimates are obtained from the output of the reference element and its time delayed version, while 2-D AOA estimation is based on the array model in FRFT beamspace. Numerical simulations show that this method can deal with multiple LFM sources. Parameter and AOA estimation with high accuracy is available at low SNR.
Zoltowski M D, Mathews C P. Real time frequency and 2-D angle estimation with sub-Nyquist spatial-temporal sampling[J].IEEE Trans. on SP.1994, 42(10):2781-2794[2]黄佑勇,王激扬,陈天麒.任意结构阵列基于高阶累积量的信号频率和二维角联合估计算法.系统工程与电子技术,2001,23(6):32-35.[3]斯德谊,刘荣科,程岱松等.时空欠采样宽频段信号频率和二维到达角估计方法.电子学报,2000,28(3):9-12.[4]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998:158-160.[5]Ozaktas H M, Orhan Arikan. Digital computation of the fractional Fourier transform[J].IEEE Trans. on SP.1996, 44(9):2141-2149[6]Santhanam B, McClellan J H. The discrete rotational Fourier transform. IEEE Trans. on SP,1996, 42(4): 994-998.[7]Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform[J].IEEE Trans.on SP.2000, 48(5):1329-1337[8]Pei S C, Yeh M H. Discrete fractional Fourier transform based on orthogonal projection[J].IEEE Trans. on SP.1999, 47(5):1335-1348