Advanced Search
Volume 22 Issue 3
May  2000
Turn off MathJax
Article Contents
Ma Bo, Qiu Zhengding. THE DISCUSSION ABOUT FINITE ITERATION CONVERGENCE OF FRACTAL WAVELET TRANSFORMATION[J]. Journal of Electronics & Information Technology, 2000, 22(3): 416-422.
Citation: Ma Bo, Qiu Zhengding. THE DISCUSSION ABOUT FINITE ITERATION CONVERGENCE OF FRACTAL WAVELET TRANSFORMATION[J]. Journal of Electronics & Information Technology, 2000, 22(3): 416-422.

THE DISCUSSION ABOUT FINITE ITERATION CONVERGENCE OF FRACTAL WAVELET TRANSFORMATION

  • Received Date: 1998-08-19
  • Rev Recd Date: 1999-02-12
  • Publish Date: 2000-05-19
  • For the operator M which is a mean shifted version of IFS(Iterated Function System) in wavelet domain is proved that in practical circumstances the same fixed point can be reached in only few iterations. So, the IFS in wavelet domain may converge without being fully contractive. Then, a contraction factor s upper bound is obtained after relaxing the collage theorem bound and the idea of eventual contractivity introduced by Fisher is explained.
  • loading
  • Davis G M. A wavelet-based analysis of fractal image compression .IEEE Trans. on Image Processing, 1998,72, 7(2) :141-154.[2] Simon B. Explicit link between local fractal transform and multiresolusion transform. Proceedings of Signal Processing, edited by J. Storer. IEEE Computer Society Press, 1995,362-366.[2]Rinaldo R, Calvagno G. Image coding by block prediction of multiresolution subimages [J].IEEE Trans. on Image Processing.1995,-4(7):909-920[3]Fisher Y, Jacobs E W, Boss R Do. Fractal Image Compression Using Iterated Transforms in Image and Text Compression (J. A. Storer, ed.) Kluwer Academic Publishers, 1992, ch. 2:35-61.[4]Barnsley M F, Ervin V, Hardin D, Lancaster J. Solution of an inverse problem for fractals and other sets [J].Proc. of the National Academy of Science of the USA.1986, 83(2):1975-1977[5]Forte B, Vrscay E R. Solving the inverse problem for function/image approximation using iterated function systems .Fractals, 1994,23, 2(3) :335-346.[6]蒋正新.矩阵理论及其应用.北京:北京航空航天大学出版社,1988,第四章:207-211.[7]Lundheim L M. A discrete framework for fractal signal modeling in fractal compression: Theory and Application to Digital Images, Fisher,Y., Ed. New York: Springer-Verlag, 1994: 250-277.[8]马波,裘正定. 小波变换的分形特性,北京:铁道学报, 1998,(6):1-7.[9]秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1995,第二章,22页.[10]Antonini M, M Barlaud, I Daubechies. Image coding using wavelet transform[J].IEEE Trans. on Image Processing.1992,1(4):205-220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1808) PDF downloads(390) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return