Swami A, Mendel J M. Cumulant-based approach to the harmonic retrieval problem. Proc ICASSP-88. New York. USA: 1988. 2264-2267.[2]Mendel J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory:[3]Theoretical results and some applications. Proc[J].IEEE.1991, 79(3):278-305[4]Ferrari A, Alengrin G. Estimation of the frequencies of a complex sinusoidal noisy signal using fourth order statistics. Proc. ICASSP-91, Toronto, Canada: 1991, 3457-3460.[5]Swami A, Mendel J M. Cumulant-based approach to the harmonic retrieval and related problems.[6]IEEE Trans. on ASSP, 1991, SP-39(5): 1099-1109.[7]梁应敞,王树勋,戴逸松.正弦参量的四阶累积量ESPRIT方法.电子学报,1994, 22(4): 6-12.[8]Papadopoulos C K, Nikias C L. Parameter estimation of exponentially damped sinusoids using higher order statistics. IEEE Trans. on ASSP, 1990, ASSP-38(8): 1424-1435.[9]Zhang X D, Li Y D. Harmonic retrieval in mixed Gaussian and non-Gaussian noises. IEEE Trans. on SP, 1994, SP-42(12): 3539-3543.[10]Zhang X D, Liang Y C. Prefiltering-based ESPRIT for estimating sinusoidal parameters in non-[11]Gaussian ARMA noise. IEEE Trans. on SP, 1995, SP-43(1): 349-353.[12]Zhang X D, Liang Y C, Li Y D. A hybrid approach to harmonic retrieval in non-Gaussian noise.[13]IEEE Trans. on IT, 1994, IT-40(4): 1220-1226.[14]Rosenblatt M, Van Ness J W. Estimation of the bispectrum. Ann. Math. Stat., 1965, 36(4):[15]20-1136.[16]Anderson J M M, Giannakis G B, Swami A. Harmonic retrieval using higher order statistics: A deterministic formulation. IEEE Trans. on SP, 1995, SP-43(8): 1880-1889.[17]Li H W, Cheng (a S. Almost sure convergence analysis of mixed time averages and k-th-order[18]cyclic statistics. IEEE Trans. on IT, 1997, IT-43(4): 1265-1268.
|