Zhao Dongfeng, Li Bihai, Zheng Sumin . STUDY OF POLLING SYSTEMS WITH LIMITED SERVICE[J]. Journal of Electronics & Information Technology, 1997, 19(1): 44-49.
Citation:
Zhao Dongfeng, Li Bihai, Zheng Sumin . STUDY OF POLLING SYSTEMS WITH LIMITED SERVICE[J]. Journal of Electronics & Information Technology, 1997, 19(1): 44-49.
Zhao Dongfeng, Li Bihai, Zheng Sumin . STUDY OF POLLING SYSTEMS WITH LIMITED SERVICE[J]. Journal of Electronics & Information Technology, 1997, 19(1): 44-49.
Citation:
Zhao Dongfeng, Li Bihai, Zheng Sumin . STUDY OF POLLING SYSTEMS WITH LIMITED SERVICE[J]. Journal of Electronics & Information Technology, 1997, 19(1): 44-49.
This paper analyzes a queue model of the polling system with limited service (K = 1) in discrete time. By the imbedded Markov chain theory and the generating function method, the mean values of queue length and message waiting time are explicitly obtained. The results obtained by H. Tagai (1985) are revised.
Hashida O. Rev. Elec. Commun. Lab., 1972, 20(3,4): 189-199.[2]Ferguson M J, Aminetzah Y J. IEEE Trans. on Commun., 1985,COM-33(3): 223-231.[3]Rubin I. De Moraes L F. IEEE J. of Select. Areas,1983, SAC-1(5): 935-947.[4]赵东风,郑苏民.通信学报1994,15(2): 18-23.[5]赵东风,郑苏民.电子学报,1994, 22(5): 102-107.[6]Tagai H. Performance. Evaluation, 1985, 5(4): 271-277.[7]赵东风,郑苏民.Waiting time analysis for polling and token passing scheme for computer and communication systems. Proc. of 1992 Int. Conf. on Communication Technology, Beijing, China. 1992, 15.04.1-15.04.3.[8]Ibe O C, Cheng X. IEEE Trans. on Automat. Contr., 1988, AC-33(1): 102-103.