Shui Penglang, Bao Zheng . OPTIMAL DESIGN OF THE REGULARITY OF BIORTHOGONAL INTERPOLATING WAVELET SYSTEM WITH COMPACTLY SUPPORTED DAULS[J]. Journal of Electronics & Information Technology, 2000, 22(1): 48-54.
Citation:
Shui Penglang, Bao Zheng . OPTIMAL DESIGN OF THE REGULARITY OF BIORTHOGONAL INTERPOLATING WAVELET SYSTEM WITH COMPACTLY SUPPORTED DAULS[J]. Journal of Electronics & Information Technology, 2000, 22(1): 48-54.
Shui Penglang, Bao Zheng . OPTIMAL DESIGN OF THE REGULARITY OF BIORTHOGONAL INTERPOLATING WAVELET SYSTEM WITH COMPACTLY SUPPORTED DAULS[J]. Journal of Electronics & Information Technology, 2000, 22(1): 48-54.
Citation:
Shui Penglang, Bao Zheng . OPTIMAL DESIGN OF THE REGULARITY OF BIORTHOGONAL INTERPOLATING WAVELET SYSTEM WITH COMPACTLY SUPPORTED DAULS[J]. Journal of Electronics & Information Technology, 2000, 22(1): 48-54.
This paper studies the parameterized respresentations of symmetrical interpolating scaling functions and their duals.Based on this,the optimal design method and corresponding minimax algorithm of the regularity of a novel type of interplating wavelet systems,biorthogonal interpolating wavelet system with compact supported dauls are proposed.The optimal results show that the approximation power of the system to smooth signals is markedly improved. The regularity of the duals enhances,and the magnitude responses of the dual filters are optimized.
Dubuc S,Interpolation through an iterative scheme.J.Math.Anal.And Appl.,1986,114(1):185-204.[2]Deslauriers G,Dubuc S Symmetric iterative interpolation processes. Constructive Approximation,1989,5(1):49-68.[3]Donoho L D.Interpolating wavelet transform.Technical report, Dept. Of Statistics, Stanford Univ.,1992.10.[4]Harten A.Multiresolution representation of data:A general framework,SIAM J.Numer.Anal.,1996,33(3):1205-1256.[5]Sweldens W.The lifting scheme:A custom-design construetion of biorthogonal wavelets,Appl.Comput.Harmon.Anal.,1996,3(2):186-200.[6]Saito N,Beyllkin G.Multiresolution respresentations using the autocorrelation functions of compactly supported wavelets,IEEE Trans.On SP 1993,SP-41(12):3584-3590.[7]水鹏朗,保铮.具有紧支撑对偶的插值子波,电子科学学刊,1999,21(5):585-591[8]Daubechies I A,Lagarias J.Two-saale difference equations,I.Global regularity of solutions,SIAM J.Math.Anal.,1991,22(5):1388-1410.[9]Daubechies I A,Lagarias J.Two-scale difference equations,L Local regularity,infinte products of matrices and fractals,SIAM J.Math.Anal.,1992,23(4):1031-1079.[10]张建康,保铮,于宏毅.M-带离散小波变换中正交小波的逼近性能分析,中国科学(E辑),1997,27(6):536-541.