Wei Yu, Sun DeBao, Cen YiGang. Gaussian Chirplet Transform and the Optimization of its Parameters[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1398-1403.
Citation:
Wei Yu, Sun DeBao, Cen YiGang. Gaussian Chirplet Transform and the Optimization of its Parameters[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1398-1403.
Wei Yu, Sun DeBao, Cen YiGang. Gaussian Chirplet Transform and the Optimization of its Parameters[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1398-1403.
Citation:
Wei Yu, Sun DeBao, Cen YiGang. Gaussian Chirplet Transform and the Optimization of its Parameters[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1398-1403.
The Chirplet Transform(CT) have being become one of the most popular field in signal processing, which is extend from the Wavelet Transform(WT). This paper calculate the Gaussian Chirplet Transform(GCT) by the Short-Time Fourier Transform(STFT). At the same time, its parameters is optimized by making use of FRFT and Generalized Time-Bandwidth Product(GTBP). Compared with WVD and STFT, GCT has been show excellent performance for the time-frequency concentration.
Folland G B. Harmonic Analysis in Phase Space. Princeton,NJ:Princetin Univ. Press, 1989:345-367.[2]Mann S, Haykin S. The Chirplet Transform: Physical Considerations[J].IEEE Trans. on Signal Processing.1995, 43(4):2745-2761[3]张贤达,保铮.非平稳信号分析与处理.国防工业出版社,1999:307-322.[4]Durak L, Arykan O. Short-Time Fourier Transform: Two Fundamental Properties and an Optimal implementation[J].IEEE Trans. on Signal Processing.2003, 51(5):1231-1242[5]Almeida L B. The Fractional Fourier Transform and TimeFrequency Representation[J].IEEE Trans. on Signal Processing.1994, 42(10):3084-3091[6]Ozaktas H M. Digital Computation of the Fractional Fourier Transform[J].IEEE Trans. on Signal Processing.1996, 44(9):2141-2150[7]Stankovic L, Alieva T. Time -Frequency Signal Analysis Based on the Windowed Fractional Fourier Transform[J].Signal Processing.2003, 83(11):2459-[8]Thomson D J. Spectrum Estimation and Harmonic Analysis[J].Proc IEEE.1982, 70:1055-1096[9]邹红,保铮.用于多分量线性调频信号的自适应核分布分析[J].电子与信息学报.2002,24(3):314-319浏览[10]Jones D L, Parks T W A. High Resolution Data-Adaptive Time-Frequency Representation, IEEE Trans. on Signal Processing, 1990, 38(9): 2127.