He Zhenya, Li Ke, Yang Luxi. CHAOTIC MAP BINARY SEQUENCES WITH GOOD SECURITY[J]. Journal of Electronics & Information Technology, 1999, 21(5): 646-651.
Citation:
He Zhenya, Li Ke, Yang Luxi. CHAOTIC MAP BINARY SEQUENCES WITH GOOD SECURITY[J]. Journal of Electronics & Information Technology, 1999, 21(5): 646-651.
He Zhenya, Li Ke, Yang Luxi. CHAOTIC MAP BINARY SEQUENCES WITH GOOD SECURITY[J]. Journal of Electronics & Information Technology, 1999, 21(5): 646-651.
Citation:
He Zhenya, Li Ke, Yang Luxi. CHAOTIC MAP BINARY SEQUENCES WITH GOOD SECURITY[J]. Journal of Electronics & Information Technology, 1999, 21(5): 646-651.
The problem of finite precision degrades the cyptologic and statistical properties of chaotic maps, and sequences generated from maps conjugated with Tent map can be reconstructed precisely by short-sequence-prediction. This paper discusses topological conjugation of chaotic maps and its properties, derives the conjugate relation between Tent, logistic and 2nd-order Chebyshev maps. A method is given to produce chaotic sequences which can sustain this predictive attack.
Dixon R C. Spread Spectrum Systems. New York: John WileySons, Inc. 1976, Chapter 3.[2]杨义先,林须端. 编码密码学. 北京: 人民邮电出版社,1992, 第15, 16章.[3] Nagai Y, et al. Guassian-like processes produced by fully developed chaos. Phys. Lett., 1985, A-112(6, 7): 259-264.[3]陈式刚. 映象与混沌. 北京: 国防工业出版社, 1992, 第3, 9章.[4]张申如, 王庭昌. 混沌二进制序列构成的安全性研究. 通信保密, 1995, 95(4): 42-46.[5]Geisel T, Fairen V. Statistical properties of chaos in Chebyshev maps. Phys. Lett., 1984, A- 105(6): 263-266.[6]Massey J L. Shift-register synthesis and BCH decoding. IEEE Trans. on IT, 1969, IT-15(1): 122-127.