Gao Jun-tao, Hu Yu-pu, Dong Li-hua . A New Generalized Self-shrinking Generator on GF(q)[J]. Journal of Electronics & Information Technology, 2005, 27(7): 1127-1130.
Citation:
Gao Jun-tao, Hu Yu-pu, Dong Li-hua . A New Generalized Self-shrinking Generator on GF(q)[J]. Journal of Electronics & Information Technology, 2005, 27(7): 1127-1130.
Gao Jun-tao, Hu Yu-pu, Dong Li-hua . A New Generalized Self-shrinking Generator on GF(q)[J]. Journal of Electronics & Information Technology, 2005, 27(7): 1127-1130.
Citation:
Gao Jun-tao, Hu Yu-pu, Dong Li-hua . A New Generalized Self-shrinking Generator on GF(q)[J]. Journal of Electronics & Information Technology, 2005, 27(7): 1127-1130.
A new q-ary generalized self-shrinking generator is presented. The main difference between the new generator and the old one is the output mode. It is shown that there is good correlation between sequences in the large sequence family, and sequences are balanced in a least period. Simultaneously, the lower bounds of the least period are provided, and the family of sequences takes on a rich group structure and linear space structure.
Coppersmith D.[J].krawczy H, Mansour Y. The shrinking generator[C]. in Advance in Cryptology-CRYPTO93, Berlin Germany: Springer-Verlag.1994,:-[2]Meier W, Stafflebach O. The self-shrinking generator[C].Advanced in Cryptology-Eurocrypt94. Berlin: Springer-Verlag,1995:205 - 214.[3]Mihalievic M J. A faster cryptanalysis of the self-shrinking generator[J].in Proceedings of ACIPS96, Berlin: Springer-Verlag.1996, LNCS 1172:182-[4]Zenner E, Krause M, Lucks S. Improved cryptanalysis of the selfshrinking generator[J].in Proceedings of ACIPS2001, Berlin:Springer-Verlag.2002, LNCS 2119:21-[5]Krause M. BDD-based cryptanalysis of keystream generators[C][J].in Advanced in Cryptology-Eurocrypt02, L.R.Knudsen (Ed),Springer-Verlag.2002, LNCS 2332:222-[6]Hu Yu-pu, Xiao Guo-zhen. The generalized self-shrinking generator[J].IEEE Trans. on Information Theory.2004, 50(4):714-718[7]胡予濮,白国强,肖国镇.GF(q)上的广义自缩序列[J]西安电子科技大学学报,2001,28(1):5-7.