Lian Qiu-sheng, Kong Ling-fu. The Construction of Redundant Contourlet Transform and Its Application to SAR Image Despeckling[J]. Journal of Electronics & Information Technology, 2006, 28(7): 1215-1218.
Citation:
Lian Qiu-sheng, Kong Ling-fu. The Construction of Redundant Contourlet Transform and Its
Application to SAR Image Despeckling[J]. Journal of Electronics & Information Technology, 2006, 28(7): 1215-1218.
Lian Qiu-sheng, Kong Ling-fu. The Construction of Redundant Contourlet Transform and Its Application to SAR Image Despeckling[J]. Journal of Electronics & Information Technology, 2006, 28(7): 1215-1218.
Citation:
Lian Qiu-sheng, Kong Ling-fu. The Construction of Redundant Contourlet Transform and Its
Application to SAR Image Despeckling[J]. Journal of Electronics & Information Technology, 2006, 28(7): 1215-1218.
The redundant contourlet transform implemented by undecimated pyramidal decomposition and directional filter bank is proposed. The circular symmetric filter bank satisfying perfect reconstruction conditions in the undecimated pyramidal decomposition is designed by McClellan transform. The adaptive local statistical model in the redundant contourlet domain and MAP estimator are employed to reduce speckle noise in SAR images. Compared with the despeckling methods based on stationary wavelet and contourlet transform, the proposed algorithm can reduce speckle noise more effectively while preserving the edges of the SAR images.
Argenti F, Alpatone L. Speckle removal from SAR images in theundecimated wavelet domain[J].IEEE Trans. on Geoscience andRemote Sensing.2002, 40(11):2363-2374[2]Candes E J. Harmonic analysis of neural networks[J].Applied andComputational Har}monicAnalysis.1999, 6(2):197-218[3]Dai Min, Peng Cheng, Chan A K, et al.. Bayesian waveletshrinkage with edge detection for SAR image despeckling[J].IEEETr}ans. on Geoscience and Remote Sensing.2004, 42(8):1642-1648[4]Candes E J, Donoho D L. Curvelets: A surprisingly effectivenonadaptive representaion for object with edges. In Curves andSurfaces. Saint-Malo: Vanderbilt University Press, 1999:105-121.[5]Do M N, Vetterli M. Contourlets and sparse image expansions.Proc. SP几2003, 5207: 560-570.[6]Po D D, Do M N. Directional multiscale statistical modeling ofimages[J].Proc. SPIE.2003, 5207:69-79[7]Viscito E, Allebach J P. The analysis and design ofmultidimensional FIR perfect reconstruction filter banks forarbitrary sampling lattices[J].IEEE Tr}ans. on Cir. and Syst.1991,38(1):29-41[8]Watsom A B. The cortex transform: Rapid computation ofsimulated neural images[J].Compnter Vision, Graphics, and ImageProcessing.1987, 39(3):311-327[9]Tay D B H, Kingsbury N G. Flexible design of multidimensionalperfect reconstruction FIR 2-band filters using transformation ofvariables. IEEE Tr}ans. on Image Pr}oc., 1993, 2(4): 466-480.[10]Donoho D L, Johhstone I M. Ideal special adaptation by waveletshrinkage. Biomeri}ika, 1994, 81(3): 425-455.[11]Mallat S. A theory for multiresolution signal decomposition: Thewavelet representation.IEEE Tran.r. nn Patterw Anal. LlachineIntell., 1989, 11(7): 674-693