Advanced Search
Volume 8 Issue 4
Jul.  1986
Turn off MathJax
Article Contents
Zhang Shi-Qing, Li Le-Min, Zhao Zhi-Jin. Speech Emotion Recognition Based on an Improved Supervised Manifold Learning Algorithm[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2724-2729. doi: 10.3724/SP.J.1146.2009.01430
Citation: Yi Kechu, Jia Yumin. A RAPID METHOD FOR DESIGNING 2-D DIGITAL FILTERS[J]. Journal of Electronics & Information Technology, 1986, 8(4): 255-264.

A RAPID METHOD FOR DESIGNING 2-D DIGITAL FILTERS

  • Received Date: 1984-08-20
  • Rev Recd Date: 1984-12-15
  • Publish Date: 1986-07-19
  • The existing methods for designing two-dimensional digital filters are outlined anda new methodcomposite methodis proposed. This method has following advan-tages: (1) its computation cost is low; (2) it is easy to acquire lineur phase performance; ( 3 ) it is conient to be generalized to multi-dimensional ones; and so on. Some expe-rimental results show that it can get better results with lower computation cost than two-dimensional window method. Therefore, it applies no only to image processing systems or other computer systems for programming software, but also to some reseach work that involve two-dimensional or multi-dinensional digital filtering.
  • R. M. Mersereau, et al., Proc. IEEE, 63(1975),610.[2]R. E.Twogood, Design and Implementation Techniques for Two-Dimensional Digital Filters, Ph. D. Thesis, University of Califonia, Nov. 1979.[3]J. L. Shank, et al., IEEE Trans. on AU, AU-20(1972), 115.[4]黄煦涛,图片处理和数字滤波,科学出版社,1980.[5]T.S Huang, IEEE Trans on AU, AU-20(1972), 88.[6]T.C.Speke, et al., IEEE Int. Conf. on ASSP, 1979, 5.[7]Haruo Kato, et al., IEEE Trans. on ASSP, ASSP-29(1981), 926.[8]L.R.Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentiee-Hall, Inc., Englewood Cliffs, New Jersey, 1977.[9]D. W. Tuffs, Proc. IEEE, 63 (1975 ), 1618.[10]D. B. Harris and R. M. Mersereau, IEEE Trans. on ASSP, ASSP-25(1977), 492.[11]R. M. Mersereau, et al., ibid, ASSP-22 (1974), 320.[12]R. E. Twogood, et al., ibid, ASSP-25 (1977 ), 165.[13]J. H. McClellan, Proc. 7-th Annual Princeton Conf. on Information Science and Systems, 1973,247.[14]R. M. mersereau, et al., IEEETrans. on CAS, CAS-23(1976), 405.[15]W. F. G. Mecklenbrauker, et al., ibid, CAS-23(1976), 414.[16]R. M. Mersereau, ibid, CAS-27 (1980 ),142.[17]R. W. Hamming, Digital Filters, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977.[18]易克初,王文涛,电子科学学刊,5(1983), 271.
  • Cited by

    Periodical cited type(19)

    1. 张家豪,章昭辉,严琦,王鹏伟. 基于语音节奏差异的情感识别方法. 计算机科学. 2024(04): 262-269 .
    2. 徐胜超. 流形学习降维算法中一种新动态邻域选择方法. 计算机技术与发展. 2022(01): 85-90 .
    3. 张石清,刘瑞欣,赵小明. 跨库语音情感识别研究进展. 计算机系统应用. 2022(11): 31-48 .
    4. 董寅冬,任福继,李春彬. 基于线性核主成分分析和XGBoost的脑电情感识别. 光电工程. 2021(02): 15-23 .
    5. 刘天宝,张凌涛,于文涛,魏东川,范轶军. 基于嵌入注意力机制层级LSTM的音视频情感识别. 激光与光电子学进展. 2021(02): 183-190 .
    6. 魏金太,高穹. 基于深度学习可变长度语音片段的情感识别. 承德石油高等专科学校学报. 2021(06): 51-56 .
    7. 田祥宏. 一种结合局部线性嵌入与支持向量机的语音识别方法. 电视技术. 2019(02): 61-65 .
    8. 杜弘彦,王士同,李滔. 基于非线性距离和夹角组合的最近特征空间嵌入方法. 计算机工程与科学. 2018(05): 888-897 .
    9. 谢湘,唐刚,肖泽苹,李通. 飞行驾驶员的应答方式识别. 北京理工大学学报. 2017(07): 744-747 .
    10. 杜弘彦,王士同. 非线性距离的最近邻特征空间嵌入改进方法. 计算机科学与探索. 2017(09): 1461-1473 .
    11. 李善,谭继文,俞昆. 基于SLLE算法和流形聚类分析的滚珠丝杠故障诊断. 组合机床与自动化加工技术. 2016(12): 96-99 .
    12. 徐照松,元昌安,覃晓,元建,李双. 基于关联规则的语音情感中韵律特征抽取算法研究. 计算机应用与软件. 2015(09): 42-45+77 .
    13. 王小虎,张石清,曹恒瑞. 基于多分类器集成的语音情感识别. 微电子学与计算机. 2015(07): 38-41+45 .
    14. 李强,皮智谋. 基于FastICA-SLLE的转子系统故障诊断研究. 组合机床与自动化加工技术. 2014(08): 105-107+118 .
    15. 张石清,李乐民,赵知劲. 人机交互中的语音情感识别研究进展. 电路与系统学报. 2013(02): 440-451+434 .
    16. 周夕良. 语音情感识别的发展与展望. 信息技术. 2013(11): 19-22+25 .
    17. 李杰,周萍. 语音情感识别中特征参数的研究进展. 传感器与微系统. 2012(02): 4-7 .
    18. 徐玉龙,王金明,吴文,陈志伟. 一种基于流形与特征融合的说话人识别方法. 军事通信技术. 2012(03): 7-11 .
    19. 李缨,于谦. 基于类集和类对的有监督流形学习的肺结节分类. 科技通报. 2012(08): 29-32 .

    Other cited types(22)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1976) PDF downloads(1053) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return