Advanced Search
Volume 23 Issue 10
Oct.  2001
Turn off MathJax
Article Contents
Luo Zhizeng, Ye Ming . FUSION OF DEPENDENCY INFORMATION USING DEMPSTER-SHAFER EVIDENTIAL REASONING[J]. Journal of Electronics & Information Technology, 2001, 23(10): 970-974.
Citation: Luo Zhizeng, Ye Ming . FUSION OF DEPENDENCY INFORMATION USING DEMPSTER-SHAFER EVIDENTIAL REASONING[J]. Journal of Electronics & Information Technology, 2001, 23(10): 970-974.

FUSION OF DEPENDENCY INFORMATION USING DEMPSTER-SHAFER EVIDENTIAL REASONING

  • Received Date: 1999-08-27
  • Rev Recd Date: 2000-05-25
  • Publish Date: 2001-10-19
  • Multisensor data fusion using Derapster-Shafer evidential reasoning is based on information s independence, but it is not true in many practical situations. This paper describes a multisensor data fusion method based on Dempster-Shafer evidential reasoning, and also gives a generalized Dempster-Shafer theory of evidence which is efficient in dealing with dependent, information. A test is tried out for object assortment based on the fusion of information from force and thermal sensors of the robot.
  • loading
  • L.A. Klein, Sensor and data fusion concepts and applications, Proc. of SPIE, 1993, TT-14,125-128.[2]G.A. Shafer, A Mathematical Theory of Evidence., Princeton, NJ., Princeton Univ. Press, 1976,Chapter 3. [3]R.M. Fung, et al., Metaprobability and Dempster-Shafer in Evidential Reasoning, Uncertainty in Artificial Intelligence, North-Holland, Elsevier Science Publishers, 1986, 295-302.[3]邵远,何发昌,罗志增,多传感器信息融合浅析,电子学报,1994,22(5),73-79.[4]段新生,证据理论与决策、人工智能,北京,中国人民大学出版,1993,第二章.[5]Y.Q. Cheng, Y. G. Wu, et al., Generalized integration method of evidence with dependency information, Proc.[J]. of SPIE.1992,1828:288-
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2280) PDF downloads(411) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return