Wu Wenling, Xiao Guozhen. NONLINEAR STRUCTURE FUNCTIONS AND THE ENUMERATION OF THE FIRST ORDER CORRELATION-IMMUNE FUNCTIONS[J]. Journal of Electronics & Information Technology, 1998, 20(2): 219-222.
Citation:
Wu Wenling, Xiao Guozhen. NONLINEAR STRUCTURE FUNCTIONS AND THE ENUMERATION OF THE FIRST ORDER CORRELATION-IMMUNE FUNCTIONS[J]. Journal of Electronics & Information Technology, 1998, 20(2): 219-222.
Wu Wenling, Xiao Guozhen. NONLINEAR STRUCTURE FUNCTIONS AND THE ENUMERATION OF THE FIRST ORDER CORRELATION-IMMUNE FUNCTIONS[J]. Journal of Electronics & Information Technology, 1998, 20(2): 219-222.
Citation:
Wu Wenling, Xiao Guozhen. NONLINEAR STRUCTURE FUNCTIONS AND THE ENUMERATION OF THE FIRST ORDER CORRELATION-IMMUNE FUNCTIONS[J]. Journal of Electronics & Information Technology, 1998, 20(2): 219-222.
By discussing linear structures of Boolean functions, a large class of the first order correlation-immune nonlinear structure functions is got; After enumerating this class of functions, a new lower bound of the number of the first order correlation-immune functions is given.
Siegenthaler T. Correlation-immunity of nonlinear combining function for cryptographic applicatian.[2]IEEE Trans. on Inform. Theory, 1994, IT-30(5): 776-780.[3]Mrtchell C. Enumerating boolean functions of cryptographic significance. J of cryptology, 1990, 2(3): 155-170.[4]王建宇.线性结构函数与一阶相关免疫函数的计数.通信学报,1996, (1): 87-91.[5]Carrion P. On Correlation-Immune Functions. Advances in Cryptology, Crypto91, Springer-Verlag,[6]-100.[7]吴文玲,肖国镇.关于布尔函数的线性结构.电子学报,已录用