Advanced Search
Volume 27 Issue 9
Sep.  2005
Turn off MathJax
Article Contents
Yu Gang, Zhang GongMei, Bian ZhengZhong, Guo YouMin. An Improved Coherence Diffusion Method for Image Enhancement[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1408-1411.
Citation: Yu Gang, Zhang GongMei, Bian ZhengZhong, Guo YouMin. An Improved Coherence Diffusion Method for Image Enhancement[J]. Journal of Electronics & Information Technology, 2005, 27(9): 1408-1411.

An Improved Coherence Diffusion Method for Image Enhancement

  • Received Date: 2004-04-26
  • Rev Recd Date: 2005-01-24
  • Publish Date: 2005-09-19
  • Coherence diffusion is an important preprocessing step for analyzing oriented structures in the image. Previous coherence diffusion methods for image enhancement could not recognize weak boundaries. In this paper, an efficient diffusion approach is presented. A new structure tensor integrating the second-order directional derivative information is designed, which can precisely analyze complex weak edges in the image. By combining the proposed structure tensor and the classical one as complementary descriptor, the improved diffusion tensor is constructed to detect strong edges simultaneously. Furthermore, parallel AOS (Additive Operator Splitting) scheme is applied to implement numerical solution, which is faster than usual numerical approach. Promising experimental results of several real images demonstrate that the new diffusion approach can preserve important strong edges and weak edges precisely while removing the noise.
  • loading
  • Weickert J. A review of nonlinear diffusion filtering. Proceedings of the First International Conference on Scale-Space Theory in Computer Vision, London UK, 1997, 1252:3 - 28.[2]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans. on Machine Intelligence,Berkey USA.1990, 12 (7):629-[3]Saito T, Harada H, Satsumabayashi J, Kumatsu T. Color image sharpening based on nonlinear reaction-diffusion. 2003International Conference on Image Processing, Yokohama,Japan, Sept. 2003, 3:389 - 392.[4]Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J].Physica D.1992, 60(4):259-[5]Weisenseel R A, Karl W C, Castanon D A. A region-based alternative for edge-preserving smoothing. Proceedings 2000International Conference on Image Processing, Vancouver,Canada, Sept. 2000, 3:778 - 781.[6]Diewald U, Preusser T, Rumpf M, Strzodka R. Diffusion models and their accelerated solution in image and surface processing.Proceeding of Algoritmy 2000, Acta Math Univ Comenianae,2001, LXX: 15 - 31.[7]Chen Y, Levine S E. Image recovery via diffusion tensor and time-delay regularization[J].Journal of Hsual Communication and Image Representation.2002, 13(3):156-[8]Weickert J. Coherence-enhancing diffusion of color images[J].Image and Vision Computing.1999, 17(3):201-[9]Bakalexis S A, Boutalis Y S, Mertzios B G. Edge detection and image segmentation based on nonlinear anisotropic diffusion.2002 14th Intemational Conference on Digital Signal Processing,Xanthi, Greece, July 2002, 2:1203 - 1206.[10]Cottet G H, Germain L. Image processing through reaction combined with nonlinear diffusion[J].Math Comp.1993, 61(10):659-[11]Brox T, Weickert J. Nonlinear matrix diffusion for optic flow estimation. Pattern Recognition, 24th DAGM-Symposium, 2002:446 - 453.[12]Weickert J, Zuiderveld K J. Parallel implementations of AOS schemes: A fast way of nonlinear diffusion filtering. IEEE International Conference on Image Processing, Santa Barbara,Oct. 1997, 3:396 - 399.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2363) PDF downloads(832) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return