Shui Penglang, Bao zheng, Jiao Licheng. A SIGNAL CODING METHOD BASED ON MSDE AND LMSDE MODEL[J]. Journal of Electronics & Information Technology, 1998, 20(2): 273-276.
Citation:
Shui Penglang, Bao zheng, Jiao Licheng. A SIGNAL CODING METHOD BASED ON MSDE AND LMSDE MODEL[J]. Journal of Electronics & Information Technology, 1998, 20(2): 273-276.
Shui Penglang, Bao zheng, Jiao Licheng. A SIGNAL CODING METHOD BASED ON MSDE AND LMSDE MODEL[J]. Journal of Electronics & Information Technology, 1998, 20(2): 273-276.
Citation:
Shui Penglang, Bao zheng, Jiao Licheng. A SIGNAL CODING METHOD BASED ON MSDE AND LMSDE MODEL[J]. Journal of Electronics & Information Technology, 1998, 20(2): 273-276.
In this paper, the mathmetical description of signal coding based on MSDE and LMSDE model is given. The signal coding under LMSDE model is transformed into solving a quadratic programs with nonlinear constrains. Finally, the efficiency and robustness under high SNR are shown by coding to two signals.
Daubechies I, Lagarias J. Two-scale difference equation, I: Existance and global regularity of solutions.[2]SIAM J. Math. Anal., 1991, 22(5): 1388-1410.[3]Daubechies I, Lagarias J. Two-scale difference equation, II: Local regularity, infinite products of[4]matrices, and fracts. SIAM J. Math. Anal., 1992, 23(4): 1031-1079.[5]Murtaza Ali H. Tewfik, Multisacle difference equation signal models: Part I-Theory. IEEE Trans. Signal Processing, 43(10), 1995, 2332-2345.[6]Jury E I, Blanchard J. A stability test for linear descrete system in Table. Proc. IRE, 1961, 49: 1947-1948.[7]韩继业,孙兰芬,等.非线性规划讲义.杭州:浙江大学数学系,1983,第3章.