Advanced Search
Volume 22 Issue 6
Nov.  2000
Turn off MathJax
Article Contents
Lu Mingjun, Wang Runsheng. ADAPTIVE DISPLACEMENT VECTOR FIELD ESTIMATION BASED ON MULTIPLE MODEL APPROACH[J]. Journal of Electronics & Information Technology, 2000, 22(6): 951-958.
Citation: Lu Mingjun, Wang Runsheng. ADAPTIVE DISPLACEMENT VECTOR FIELD ESTIMATION BASED ON MULTIPLE MODEL APPROACH[J]. Journal of Electronics & Information Technology, 2000, 22(6): 951-958.

ADAPTIVE DISPLACEMENT VECTOR FIELD ESTIMATION BASED ON MULTIPLE MODEL APPROACH

  • Received Date: 1999-02-26
  • Rev Recd Date: 1999-08-19
  • Publish Date: 2000-11-19
  • Each submodel of a half plane compound Gauss-Markov model, which is identified by a line process, is suitable for describing stationary or nonstationary DVF(displacement vector field); In order to determine the a priori distribution of these submodels, a half plane Markov random field model is utilized to describe the distribution of the line process. Thus, a recursive and adaptive DVF estimation algorithm based on multiple model approach is developed in this paper.
  • loading
  • Brailean J C, Katsaggelos A K. A recursive nonstationary MAP displacement vector field estimation algorithm. IEEE Trans. on Image Processing, 1995, IP-4(4): 416-429.[2]Efstratiadis S N, Katsaggelos A K. Nonstationary AR modeling and constrained recursive estimation of the displacement field. IEEE Trans. on Circuits and Systems for Video Technology,1992, CASVT-2(4): 334-346.[3]Stuller J, Krishnamurthy G. Kalman filter formulation of low-level television image motion estimation[J].Comp. Vision. Graph. Image Proc.1983, 21(3):169-204[4]Zhang J, Hanauer G G. The application of mean field theory to image motion estimation. IEEE Trans. on Image Processing, 1995, IP-4(1): 19-33.[5]Konrad J, Dubois E. Bayesian estimation of motion vector fields. IEEE Trans. on Pattern Anal. Mach. Intell., 1992, PAMI-14(9): 910-927.[6]Lainiotis D G. Partitioning: A unifying framework for adaptive systems I: Estimation[J].Proc.IEEE.1976, 64(8):1126-1143[7]Zhang J. Parameter reduction for the compound Gauss-Markov model. IEEE Trans. on Image Processing, 1995, IP-4(3): 382-386.[8]Jeng F C, Woods J W. Simulated annealing in compound Gaussian random fields. IEEE Trans.on Inform. Theory,1990, IT-36(1): 94-107.[9]Jeng F C, Woods J W. Compound Gauss-Markov random fields for image estimation. IEEE Trans. on Signal Processing, 1991, SP-39(3): 683-697.[10]Lainiotis D G. Optimal adaptive estimation: Structure and parameter adaptation. IEEE Trans.on Automat. Contr., 1971, AC-16(2): 160-170.[11]Sims F L, Lainiotis D G, Magill D T. Recursive algorithm for the calculation of the adaptive Kalman filter weighting coefficients. IEEE Trans. on Automat. Contr., 1969, AC-14(2): 215-218.[12]Magill D T. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. on Automat. Contr., 1965, AC-10(4): 434-439.[13]Tugnait J K. Detection and estimation for abruptly changing systems[J].Automatica.1982, 18(5):607-615
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2234) PDF downloads(547) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return