Shi Xiao-fei, Liu Ren-jie, Miao Rui. A Parameter Kurtosis-Dependent Flexible BSS Algorithm[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2033-2036.
Citation:
Shi Xiao-fei, Liu Ren-jie, Miao Rui. A Parameter Kurtosis-Dependent Flexible BSS Algorithm[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2033-2036.
Shi Xiao-fei, Liu Ren-jie, Miao Rui. A Parameter Kurtosis-Dependent Flexible BSS Algorithm[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2033-2036.
Citation:
Shi Xiao-fei, Liu Ren-jie, Miao Rui. A Parameter Kurtosis-Dependent Flexible BSS Algorithm[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2033-2036.
To overcome some shortcomings of existing algorithms which separate the mixture of super- and sub-gaussian sources, a parameter kurtosis-dependent flexible Blind Source Separation (BBS) algorithm is proposed. A weighed double Gaussian model is proposed to estimate super-Gaussian and sub-Gaussian probability density. In the framework of natural gradient, model parameter is calculated online by kurtosis. Applied to images mixing, experiment shows the proposed algorithm can successfully separate the mixture of super- and sub-gaussian images. Meanwhile experiment also shows that the proposed algorithm has better performance and convergence than existing algorithms.
Amari S I. Natural gradient works efficiently in Learning[J].Neural Computation.1998, 10(2):251-276[2]Cardoso J F. Blind signal separation: Statistical principles[J].Proc. IEEE.1998, 86(10):2009-2025[3]Boscolo R, Vwani H P. Independent component analysis based on nonparametric density estimation[J].IEEE Trans. on Neural Networks.2004, 15(1):55-65[4]Vlassis N, Motomura Y. Efficient source adaptivity in independent component analysis[J].IEEE Trans. on Neural Networks.2001, 12(3):559-565[5]Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended informax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 1999, 11(2): 409-433.[6]Choi S, Cichocki A, Amari S. Flexible independent component analysis. IEEE Workshop on Neural Networks for Signal Processing, Cambridge, UK, 1998: 83-92.[7]Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis. New York: John Wiley, 2001: 203-208.