Advanced Search
Volume 28 Issue 11
Sep.  2010
Turn off MathJax
Article Contents
Shi Xiao-fei, Liu Ren-jie, Miao Rui. A Parameter Kurtosis-Dependent Flexible BSS Algorithm[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2033-2036.
Citation: Shi Xiao-fei, Liu Ren-jie, Miao Rui. A Parameter Kurtosis-Dependent Flexible BSS Algorithm[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2033-2036.

A Parameter Kurtosis-Dependent Flexible BSS Algorithm

  • Received Date: 2005-03-14
  • Rev Recd Date: 2005-09-19
  • Publish Date: 2006-11-19
  • To overcome some shortcomings of existing algorithms which separate the mixture of super- and sub-gaussian sources, a parameter kurtosis-dependent flexible Blind Source Separation (BBS) algorithm is proposed. A weighed double Gaussian model is proposed to estimate super-Gaussian and sub-Gaussian probability density. In the framework of natural gradient, model parameter is calculated online by kurtosis. Applied to images mixing, experiment shows the proposed algorithm can successfully separate the mixture of super- and sub-gaussian images. Meanwhile experiment also shows that the proposed algorithm has better performance and convergence than existing algorithms.
  • loading
  • Amari S I. Natural gradient works efficiently in Learning[J].Neural Computation.1998, 10(2):251-276[2]Cardoso J F. Blind signal separation: Statistical principles[J].Proc. IEEE.1998, 86(10):2009-2025[3]Boscolo R, Vwani H P. Independent component analysis based on nonparametric density estimation[J].IEEE Trans. on Neural Networks.2004, 15(1):55-65[4]Vlassis N, Motomura Y. Efficient source adaptivity in independent component analysis[J].IEEE Trans. on Neural Networks.2001, 12(3):559-565[5]Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended informax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 1999, 11(2): 409-433.[6]Choi S, Cichocki A, Amari S. Flexible independent component analysis. IEEE Workshop on Neural Networks for Signal Processing, Cambridge, UK, 1998: 83-92.[7]Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis. New York: John Wiley, 2001: 203-208.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2125) PDF downloads(655) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return