Engheta N, Murphy W D, Rokhlin V, et al. The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans. on Antennas and Propagation, 1992, AP-40(6): 634-641.[2]Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine, 1993, 35(3): 7-12.[3]Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J].Microwave Opt. Technol. Lett.1995, 10(1):14-19[4]Epton M A, Dembart B. Multipole translation theory for the there-dimensional Laplace and Helmholtz equations[J].SIAM J. Sci. Comput.1995, 16(4):865-897[5]Sheng X Q, Jin J M, Song J M,et al. On the formulation of hybrid finite-element and boundaryintegral method for 3-D scattering. IEEE Trans. on Antennas and Propagation, 1998, AP-46(3):303-311.[6]Zhao J S, Chew W C, Lu C C, et al. Thin-stratified medium fast-multipole algorithm for solving microstrip structures. IEEE Trans. on Microwave and Techniques Theory, 1998, MTT-46(4):395-403.[7]Song J M, Lu C C, Chew W C, et al. Fast Illinois solver code(FISC)[J].IEEE Antennas and Propagation Magazine.1998, 40(3):27-34[8]Wang J J H, Dubberley J R. Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an interative conjugate gradient method. IEEE Trans. on Microwave and Techniques Theory, 1989, MTT-37(7): 1119-1125.[9]Song J M, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. on Antennas and Propagation, 1997, AP-45(10): 1488-1493.
|