Wang Baiyong, Yang Shan. AN ALGEBRAIC ALGORITHM FOR VOLTERRA SERIES EXPRESSION OF NONLINEAR NETWORK[J]. Journal of Electronics & Information Technology, 1988, 10(5): 421-429.
Citation:
Wang Baiyong, Yang Shan. AN ALGEBRAIC ALGORITHM FOR VOLTERRA SERIES EXPRESSION OF NONLINEAR NETWORK[J]. Journal of Electronics & Information Technology, 1988, 10(5): 421-429.
Wang Baiyong, Yang Shan. AN ALGEBRAIC ALGORITHM FOR VOLTERRA SERIES EXPRESSION OF NONLINEAR NETWORK[J]. Journal of Electronics & Information Technology, 1988, 10(5): 421-429.
Citation:
Wang Baiyong, Yang Shan. AN ALGEBRAIC ALGORITHM FOR VOLTERRA SERIES EXPRESSION OF NONLINEAR NETWORK[J]. Journal of Electronics & Information Technology, 1988, 10(5): 421-429.
It is important to solve the nth order Volterra kernel or nonlinear transfen , function in describing nonlinear network by Volterra series. Based on the auxiliary algebraic expression of the Volterra series, in this paper, an algebraic algorithm is proposed to evaluate the nth order Volterra kernel and nonlinear function in regular, triangular and sym-metric forms. In addition, the complexity of the algebraic algorithm is reduced.
L.O. Chua, C. Y. Ng, Electronic Circuits Syst, 3(1979), 255-267.[2]M.Fleiess, M. Lamnabhi, F. Lamnabhi-Lagrrigue, IEEE Trans. on CAS, CAS-30(1983), 554-570.[3]W. J. Rugh, Nonlinear System Theory, Johns Hopkins University Press, Baltimore, MA. 1981, pp. 12-190.[4]王柏勇,非线性网络的辅助代数解析法,中国电机工程学会电路理论及应用分委会首届学术交流会论文集,武汉,1986年6月,PP. 25-31.