Yuan Yongbin, Xu Jilin, Huang Xiangfu. AMBIGUITY FUNCTIONS OF ONE CERTAIN CHAOTIC RADAR WAVEFORMS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 641-647.
Citation:
Yuan Yongbin, Xu Jilin, Huang Xiangfu. AMBIGUITY FUNCTIONS OF ONE CERTAIN CHAOTIC RADAR WAVEFORMS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 641-647.
Yuan Yongbin, Xu Jilin, Huang Xiangfu. AMBIGUITY FUNCTIONS OF ONE CERTAIN CHAOTIC RADAR WAVEFORMS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 641-647.
Citation:
Yuan Yongbin, Xu Jilin, Huang Xiangfu. AMBIGUITY FUNCTIONS OF ONE CERTAIN CHAOTIC RADAR WAVEFORMS[J]. Journal of Electronics & Information Technology, 1998, 20(5): 641-647.
This paper presents one certain chaotic radar waveforms based on one-dimensional chaotic sequences.This paper derives theoretically the formulae of the ambiguity functions of two casess,i.e.,(1) continuous chaotic radar waveforms;(2)rectangular pulsse raaar waveforms modulated by cut-off chaotic sequences.Such theoretical analysis and numerical simulations denote that the ambiguity functions of the first case are shaped by iedal thumbtacks,and those of the second case are shaped by sharp knife edges.These results hint that such chaotic radar waveforms have good range and velocity resolutions.
Woodward P M. Radar ambiguity analysis. AD653404, 1967.[2]Eckmann J -P, Ruelle D. Ergodic theory of chaos and strange attractors[J].Rev. Mod. Phys.1985, 57(3):617-656[3]裴留庆,颐勇.混沌与嗓声.电子学报,1991,19(6): 80-90.[4]王梓坤论混沌与随机.北京师范大学学报(自然科学版),1994, 30(2): 199-202.[5]Heidari-Bateni G, McGillem C D. A chaotic direct-sequence spread-spectrum communication system[J].IEEE Trans. on COM.1994, 42(2/3/4):1524-1527[6]Rasband S N. Chaotic Dynamics of Nonlinear Systems. New York: John WileySons, 1990, Ch.l-Ch.2.[7]Lasota A, Mackey M C. Probabilistic Properties of Deterministic Systems. Cambridge: Cambridge University Press, 1985, Ch.5.[8][8][9]Woodward P M. Probability and Information Theory with Application to Radar. 2nd ed., New York: Pergamon Press, 1964, Ch.2-Ch.4.[10]Nussbaumer H J. Fast Fourier Transform and Convolution Algorithm. 2nd ed., Berlin: Springer-Verlag, 1982, Ch.3.