Advanced Search
Volume 20 Issue 4
Jul.  1998
Turn off MathJax
Article Contents
Xian Ming, Zhuang Zhaowen, Xiao Shunping, Guo Guirong. THE CHAOS AND MULTIFRACTAL THEORY BASED RADAR SIGNAL PROCESSING AND RADAR TARGET RECOGNITION[J]. Journal of Electronics & Information Technology, 1998, 20(4): 433-439.
Citation: Xian Ming, Zhuang Zhaowen, Xiao Shunping, Guo Guirong. THE CHAOS AND MULTIFRACTAL THEORY BASED RADAR SIGNAL PROCESSING AND RADAR TARGET RECOGNITION[J]. Journal of Electronics & Information Technology, 1998, 20(4): 433-439.

THE CHAOS AND MULTIFRACTAL THEORY BASED RADAR SIGNAL PROCESSING AND RADAR TARGET RECOGNITION

  • Received Date: 1997-05-19
  • Rev Recd Date: 1997-10-13
  • Publish Date: 1998-07-19
  • Based on the recently developed chaos and multifractal theory,this paper introduces new methods for radar signal processing,radar targete characteristic analysing and radar target recognition.The Lyapunov exponents are calculated.With the correlationalintegral method,the multifractal dimensions of radar signal are further obtained.Then by the ART2 neural network,the radar target recognition is carred out.The results of this paper show that the chaos,multifracted and neural network theory have great potentials in the fields of radar signal processing and radar target recognition.
  • loading
  • Kennedy M P. Three steps to chaos, IEEE Trans.on CAS, 1993, CAS-40(10): 640-674. (Special Issue on Chaos in Nonlinear Electronic Circuits).[2]Chua L O, et al. Linear and Nonlinear Circuits. New York: McGraw-Hill, 1985, 1-79.[3]Mehaute A Le, et al. Overview of electrical process in fractal geometry: From electrodynamic relaxation to superconductivity[J].Proc. IEEE.1993, 81(10):1500-1510[4]Chua L O, Brown K, Hamilton N. Fractal in the twist and flip circuit, Proc[J].IEEE.1993, 81(10):1466-1491[5]李后强,汪富泉.分形理论及其在分子科学中的应用.北京:科学出版社,1993,第2章,第3章.[6]Lin T, Chua L U. On choas of digital filter in the real world. IEEE Trans. on CAS, 1991, CAS-38(5): 557-558.[7]Beaumont J M. Image data compression using fractal techniques. BT Techology Journal 1991, 27(9): 13-27.[8]Wornell G W, Oppenheim A V. Estimation of fractal of signal from noisy measurement using wavelets. IEEE Trans. on SP, 1992, SP-40(3): 611-623.[9]Lo T, et al. Fractal character of sea-scattered signal and detection of sea-surface targets. IEE Proc.-F, 1993, 40(4): 1-29.[10]Buzug Th, Pfister G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors, Phys[J].Rev. A.1992, 45(10):7073-7084[11]Wolf A, Swift J B, Swinney H L, Vastano J A. Determining Lyapunov exponents from a time series.[J]. Physica D.1985,16:285-[12]黄立基,丁菊仁.多标度分形理论及进展.物理学进展,1991, 11(3): 269-330.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2173) PDF downloads(506) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return