Advanced Search
Volume 25 Issue 11
Nov.  2003
Turn off MathJax
Article Contents
Pei Jihong, Yang Xuan. Pre-extracting support vector for support vector maching using bi-color voronoi diagrams[J]. Journal of Electronics & Information Technology, 2003, 25(11): 1494-1498.
Citation: Pei Jihong, Yang Xuan. Pre-extracting support vector for support vector maching using bi-color voronoi diagrams[J]. Journal of Electronics & Information Technology, 2003, 25(11): 1494-1498.

Pre-extracting support vector for support vector maching using bi-color voronoi diagrams

  • Received Date: 2002-06-24
  • Rev Recd Date: 2002-11-29
  • Publish Date: 2003-11-19
  • Support Vector Machines (SVMs) are a new generation learning system based on recent advances in statistical learning theory. SVMs have many well features that make them attractive for small samples, nonlinear and high dimensional pattern recognition. However, choice of Support Vectors(SVs) is difficult in SVMs, which is a bottleneck problem. In this paper, a novel method using bi-color Voronoi diagram is proposed to pre-extract SVs based on Voronoi diagram. Considering the distribution feature of samples space, this method determi-nates SVs based on the bi-color Voronoi diagram before training SVMs. Learning is based on these pre-extracted vectors. Experiments show that this method is feasible and effective.
  • loading
  • V.N.Vapnik著,张学工译,统计学习理论的本质[M].北京,清华大学出版社,2000年,11-126.[2]V.N.Vapnik,An overview of statistical learning theory,IEEE Trans.on Neural networks,1999,10(5),988-999.[3]边肇祺,张学工,模式识别[M],北京,清华大学出版社,2000年,161-176,284-305.[4]焦李成,张莉,周伟达,支撑矢量预选取的中心距离比值法,电子学报,2001,29(3),383-386.[5]周培德,计算几何--算法分析与设计[M],北京,清华大学出版社,2000年,88-130,236-271.[6]F. Aurenhammer, Voronoi diagrams-a survey of a fundamental geometric data structure, ACM Comput. Survey, 1991, 23(3), 345-405.[7]G.W. Rogers, J. Solka, D. S. Malyevac, C. E. Priebe, A self-organizing network for computing a posteriori conditional class probability, IEEE Trans. on Systems, Man and Cybernetics, 1993,23(6), 1672-1682.[8]N.K. Bose, A. K. Garga, Neural network design using Voronoi diagrams, IEEE Trans. on Neural Networks, 1993, 4(5), 778-787.[9]C. Gentile, M. Sznaier, An improved Voronoi-diagram-based neural net for pattern classification,IEEE Trans. on Neural Networks, 2001, 12(5), 1227-1234.[10]阎平凡,张长水,人工神经网络与模拟进化计算[M],北京,清华大学出版社,2000年,60-95.[11]D.Chen,Efficient geometric algorithm on the EREW PRAM,IEEE Trans.on Parallel Distrib.Syst.,1995,6(1),41-47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2223) PDF downloads(541) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return