Advanced Search
Volume 20 Issue 1
Jan.  1998
Turn off MathJax
Article Contents
Zhang Jiankang, Bao Zheng, Jiao Licheng . THEORY OF M-BAND WAVELET PACKETS[J]. Journal of Electronics & Information Technology, 1998, 20(1): 1-6.
Citation: Zhang Jiankang, Bao Zheng, Jiao Licheng . THEORY OF M-BAND WAVELET PACKETS[J]. Journal of Electronics & Information Technology, 1998, 20(1): 1-6.

THEORY OF M-BAND WAVELET PACKETS

  • Received Date: 1996-06-20
  • Rev Recd Date: 1997-04-17
  • Publish Date: 1998-01-19
  • In recent years, M-band orthonormal wavelet bases, due to their good characteristics, have attracted attention. The ability of 2-band wavelet packets to decompose high frequency channels can be employed to improve the properpty of wavelet for time-frequency localization, which makes more kinds of signals for analyzing by wavelet. Similar to the notations from the extention of 2-band wavelets to 2-band wavelet packets, the theory framework of M-band wavelet packets is developed, a generalization of the notations and properties of 2-band wavelet packets to that of M-band wavelet packets is made and the corresponding proofs are given.
  • loading
  • Coifman R R, Wickerhauser M. Entropy-based algorithms for best[2]Information Theory, 1992, IT-38(2): 713-718.[3]Gopinath R A, Burrus C S. Wavelet filter banks. in C.K.Chui, Ed.,[4]and Applications. New York: Academic, 1992, 603-654.[5]Heller P, Resikoff H W, Wells R O. Wavelet matrices and the representation of discrete functions: in C. K. Chui, Ed., Wavelets--A Tutorial in Theory and Applications. New York: Academic 1992,15-51.[6]Zou H, Tewfik A H. Discrete orthogonal M-band wavelet decomposition. in Proc.ICCSSP,San Francisco, CA: 1992, IV-605-IV-608.[7]Alkin O, Caglar H. Design of efficient M-band coders with linear-phase and perfect reconstruction properties. IEEE Trans. on Signal Processing, 1995, SP-43(7): 1579-1590.[8]Tewfik A H. Wavelet domain bearing estimation in unknown correlated noise IEEE ICASSP, 1994, IV-109-IV-112.[9]Daubechies I, Orthonormal bases of compactly supported wavelets. Comm[J].Pure Applied Math.1988, 41(3):909-996[10]Cohen A,et al. Biorthogonal bases of compactly supported wavelets. Comm. Pure Applied Math.,[11]92, 45(2): 485-560.[12]Lawton W M. Necessary and sufficient conditions for constructing orthonormal wavelets bases. J.[13]Math. Physics,1991,32 (1): 57-61.[14]Steffen P, et al. Theory of regular M-band wavelet bases, IEEE Trans. on SP, 1993, SP-41(12): 3497-3510.[15]Herley C, et al. Tiling of the time-frequency plane: Construction of arbitrary orthogonal bases and fast tiling algorithms. IEEE Trans. on SP, 1993, 41(12): SP-3341-3359.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1958) PDF downloads(403) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return